Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene


The success of metal-based plasmonics for manipulating light at the nanoscale has been empowered by imaginative designs and advanced nano-fabrication. However, the fundamental optical and electronic properties of elemental metals, the prevailing plasmonic media, are difficult to alter using external stimuli. This limitation is particularly restrictive in applications that require modification of the plasmonic response at sub-picosecond timescales. This handicap has prompted the search for alternative plasmonic media1,2,3, with graphene emerging as one of the most capable candidates for infrared wavelengths. Here we visualize and elucidate the properties of non-equilibrium photo-induced plasmons in a high-mobility graphene monolayer4. We activate plasmons with femtosecond optical pulses in a specimen of graphene that otherwise lacks infrared plasmonic response at equilibrium. In combination with static nano-imaging results on plasmon propagation, our infrared pump–probe nano-spectroscopy investigation reveals new aspects of carrier relaxation in heterostructures based on high-purity graphene.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental configuration and ultrafast pump–probe plasmonic control.
Figure 2: AFM and static nano-IR imaging and line-profiles at different gate voltages.
Figure 3: Plasmonic line-profiles, dispersion and Drude weight calculations.


  1. 1

    Boltasseva, A. & Shalaev, V. M. All that glitters need not be gold. Science 8, 1086–1101 (2014).

    Google Scholar 

  2. 2

    MacDonald, K. F., Samson, Z. L., Stockman, M. I. & Zheludev, N. I. Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2009).

    ADS  Article  Google Scholar 

  3. 3

    Atwater, H. A. The promise of plasmonics. Sci. Am. 296, 56–62 (2007).

    Article  Google Scholar 

  4. 4

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 641–617 (2013).

    Google Scholar 

  5. 5

    Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749–758 (2012).

    ADS  Article  Google Scholar 

  6. 6

    Basov, D. N., Fogler, M. M., Lanzara, A., Wang, F. & Zhang, Y. Colloquium: graphene spectroscopy. Rev. Mod. Phys. 86, 959–993 (2014).

    ADS  Article  Google Scholar 

  7. 7

    Javier García de Abajo, F. et al. Graphene plasmonics: challenges and opportunities. ACS Photon. 1, 135–152 (2014).

    Article  Google Scholar 

  8. 8

    Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    ADS  Article  Google Scholar 

  9. 9

    Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    ADS  Article  Google Scholar 

  10. 10

    Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nature Mater. 14, 421–425 (2014).

    ADS  Article  Google Scholar 

  11. 11

    Principi, A. et al. Plasmon losses due to electron–phonon scattering: the case of graphene encapsulated in hexagonal boron nitride. Phys. Rev. B 90, 165408 (2014).

    ADS  Article  Google Scholar 

  12. 12

    Echtermeyer, T. J. et al. Strong plasmonic enhancement of photovoltage in graphene. Nature Commun. 2, 458 (2011).

    ADS  Article  Google Scholar 

  13. 13

    Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotech. 9, 780–793 (2014).

    ADS  Article  Google Scholar 

  14. 14

    Mak, K. F., Ju, L., Wang, F. & Heinz, T. F. Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Comm. 152, 1341–1349 (2012).

    ADS  Article  Google Scholar 

  15. 15

    Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nature Commun. 4, 1987 (2014).

    ADS  Article  Google Scholar 

  16. 16

    Wagner, M. et al. Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump-probe nanoscopy. Nano Lett. 14, 894–900 (2014).

    ADS  Article  Google Scholar 

  17. 17

    Wagner, M. et al. Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy. Nano Lett. 14, 4529–4534 (2014).

    ADS  Article  Google Scholar 

  18. 18

    Eisele, L. et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nature Photon. 8, 841–845 (2014).

    ADS  Article  Google Scholar 

  19. 19

    Fei, Z. et al. Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

    ADS  Article  Google Scholar 

  20. 20

    Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    ADS  Article  Google Scholar 

  21. 21

    Lui, C. H., Mak, K. F., Shan, J. & Heinz, T. F. Ultrafast photoluminescence from graphene. Phys. Rev. Lett. 105, 127404 (2010).

    ADS  Article  Google Scholar 

  22. 22

    Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).

    ADS  Article  Google Scholar 

  23. 23

    Frenzel, A. J., Lui, C. H., Shin, Y. C., Kong, J. & Gedik, N. Semiconducting-to-metallic photoconductivity crossover and temperature-dependent Drude weight in graphene. Phys. Rev. Lett. 113, 056602 (2014).

    ADS  Article  Google Scholar 

  24. 24

    Gierz, I. et al. Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nature Mater. 12, 1119–1124 (2013).

    ADS  Article  Google Scholar 

  25. 25

    Caldwell, J. D. et al. Sub-diffractional, volume-confined polaritons in a natural hyperbolic material: hexagonal boron nitride. Nature Commun. 5, 5221 (2014).

    ADS  Article  Google Scholar 

  26. 26

    Ni, G. X. et al. Plasmons in graphene moiré superlattices. Nature Mater. 14, 1217–1222 (2015).

    ADS  Article  Google Scholar 

  27. 27

    Winnerl, S. et al. Carrier relaxation in epitaxial graphene photoexcited near the Dirac point. Phys. Rev. Lett. 107, 237401 (2011).

    ADS  Article  Google Scholar 

  28. 28

    Kashuba, A. B. Conductivity of defectless graphene. Phys. Rev. B 78, 085415 (2008).

    ADS  Article  Google Scholar 

  29. 29

    Briskot, U. et al. Collision-dominated nonlinear hydrodynamics in graphene. Phys. Rev. B 92, 115426 (2015).

    ADS  Article  Google Scholar 

  30. 30

    Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotech. 3, 210–215 (2008).

    Article  Google Scholar 

Download references


We thank P. Kim, Z. Sun, A. Sternbach, S. Dai and J.-S. Wu for helpful discussions. Research on static plasmon interferometry of high-mobility graphene is supported by DOE-BES DE-FG02-00ER45799. Work on ultrafast imaging of non-equilibrium plasmons is supported by ONR N00014-15-1-2671. The development of ultrafast pump–probe spectroscopy is supported by DOE-BES DE-SC0012592 and DE-SC0012376. The development of nano-imaging is supported by AFOSR and ARO. D.N.B is supported by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF4533. J.H. acknowledges support from ONR N00014-13-1-0662. G.X.N., B.O., and A.H.C.N. acknowledge the National Research Foundation, Prime Minister Office, Singapore, under its Medium Sized Centre Program and CRP award ‘Novel 2D materials with tailored properties: beyond graphene’ (R-144-000-295-281). B.O. acknowledge NRF-Competitive Research Programme (CRP award no. NRF-CRP9-2011-3).

Author information




All authors were involved in designing the research performing the research and writing the paper.

Corresponding author

Correspondence to D. N. Basov.

Ethics declarations

Competing interests

F.K. is one of the cofounders of Neaspec, producer of the s-SNOM apparatus used in this study.

Supplementary information

Supplementary information

Supplementary information (PDF 2202 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ni, G., Wang, L., Goldflam, M. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nature Photon 10, 244–247 (2016).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing