Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators


Plasmons in graphene nanoresonators have many potential applications in photonics and optoelectronics, including room-temperature infrared and terahertz photodetectors, sensors, reflect arrays or modulators1,2,3,4,5,6,7. The development of efficient devices will critically depend on precise knowledge and control of the plasmonic modes. Here, we use near-field microscopy8,9,10,11 between λ0 = 10–12 μm to excite and image plasmons in tailored disk and rectangular graphene nanoresonators, and observe a rich variety of coexisting Fabry–Perot modes. Disentangling them by a theoretical analysis allows the identification of sheet and edge plasmons, the latter exhibiting mode volumes as small as 10−8λ03. By measuring the dispersion of the edge plasmons we corroborate their superior confinement compared with sheet plasmons, which among others could be applied for efficient 1D coupling of quantum emitters12. Our understanding of graphene plasmon images is a key to unprecedented in-depth analysis and verification of plasmonic functionalities in future flatland technologies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: GP modes in graphene disk nanoresonators on an SiO2 substrate.
Figure 2: GP modes in rectangular graphene nanoresonators on a 5-nm-thick SiO2 film on a CaF2 substrate.
Figure 3: Dispersion of sheet and edge GPs in a large graphene structure on an SiO2 substrate.


  1. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

    Article  ADS  Google Scholar 

  2. Yan, H. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech. 7, 330–334 (2012).

    Article  ADS  Google Scholar 

  3. Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    Article  ADS  Google Scholar 

  4. Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photon. 7, 394–399 (2013).

    Article  ADS  Google Scholar 

  5. Tamagnone, M., Fallahi, A., Mosig, J. R. & Perruisseau-Carrier, J. Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices. Nature Photon. 8, 556–563 (2014).

    Article  ADS  Google Scholar 

  6. Fang, Z. et al. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett. 14, 299–304 (2014).

    Article  ADS  Google Scholar 

  7. Fang, Z. et al. Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7, 2388–2395 (2013).

    Article  Google Scholar 

  8. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  ADS  Google Scholar 

  9. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  ADS  Google Scholar 

  10. Gerber, J. A., Berweger, S., O'Callahan, B. T. & Raschke, M. B. Phase-resolved surface plasmon interferometry of graphene. Phys. Rev. Lett. 113, 055502 (2014).

    Article  ADS  Google Scholar 

  11. Fei, Z. et al. Edge and surface plasmons in graphene nanoribbons. Nano Lett. 15, 8271–8276 (2015).

    Article  ADS  Google Scholar 

  12. Bermudez-Urena, E. et al. Coupling of individual quantum emitters to channel plasmons. Nature Commun. 6, 7883 (2015).

    Article  ADS  Google Scholar 

  13. Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of graphene at finite doping. New J. Phys. 8, 318 (2006).

    Article  ADS  Google Scholar 

  14. Shung, K. W. K. Dielectric function and plasmon structure of stage-1 intercalated graphite. Phys. Rev. B 34, 979–993 (1986).

    Article  ADS  Google Scholar 

  15. Hanson, G. W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302–064308 (2008).

    Article  ADS  Google Scholar 

  16. Vafek, O. Thermoplasma polariton within scaling theory of single-layer graphene. Phys. Rev. Lett. 97, 266406 (2006).

    Article  ADS  Google Scholar 

  17. Jablan, M., Buljan, H. & Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

    Article  ADS  Google Scholar 

  18. Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    Article  ADS  Google Scholar 

  19. Cai, X. et al. Plasmon-enhanced terahertz photodetection in graphene. Nano Lett. 15, 4295–4302 (2015).

    Article  ADS  Google Scholar 

  20. Freitag, M. et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nature Commun. 4, 1951 (2013).

    Article  ADS  Google Scholar 

  21. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotech. 9, 780–793 (2014).

    Article  ADS  Google Scholar 

  22. Zhu, X. et al. Plasmon–phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography. Nano Lett. 14, 2907–2913 (2014).

    Article  ADS  Google Scholar 

  23. Volkov, V. A. & Mikhailov, S. A. Edge magnetoplasmons: low frequency weakly damped excitations in inhomogeneous two-dimensional electron systems. Sov. Phys. JETP 67, 1639–1653 (1988).

    Google Scholar 

  24. Nikitin, A. Y., Guinea, F., García-Vidal, F. J. & Martín-Moreno, L. Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys. Rev. B 84, 161407 (2011).

    Article  ADS  Google Scholar 

  25. Wang, W., Apell, P. & Kinaret, J. Edge plasmons in graphene nanostructures. Phys. Rev. B 84, 085423 (2011).

    Article  ADS  Google Scholar 

  26. Yan, H. et al. Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. Nano Lett. 12, 3766–3771 (2012).

    Article  ADS  Google Scholar 

  27. Petković, I. et al. Carrier drift velocity and edge magnetoplasmons in graphene. Phys. Rev. Lett. 110, 016801 (2013).

    Article  ADS  Google Scholar 

  28. Schmidt, F.-P. et al. Universal dispersion of surface plasmons in flat nanostructures. Nature Commun. 5, 3604 (2014).

    Article  ADS  Google Scholar 

  29. Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).

    Article  ADS  Google Scholar 

  30. Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010).

    Article  ADS  Google Scholar 

  31. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    Article  ADS  Google Scholar 

  32. Kumar, A. et al. Chiral plasmon in gapped Dirac systems. Phys. Rev. B 93, 041413 (2016).

    Article  ADS  Google Scholar 

  33. Justin, C. W. & Song, M. S. R. Chiral plasmons without magnetic field. Preprint at (2015).

Download references


The authors acknowledge support from the European Union through ERC starting grants (TERATOMO grant no. 258461, SPINTROS grant no. 257654 and CarbonLight grant no. 307806), the European Commission under the Graphene Flagship (contract no. CNECTICT-604391) and the Spanish Ministry of Economy and Competitiveness (MAT2014-53432-C5-4-R, MAT2012-36580, MAT2012-37638, RYC-2012-12281, FIS2013-47161-P and ‘Severo Ochoa’ Programme for Centres of Excellence R&D grant no. SEV-2015-0522). F.K. acknowledges support from the Fundacio Cellex Barcelona, the ERC Career integration grant (294056, GRANOP), the EC project GRASP (FP7-ICT-2013-613024-GRASP) and the Government of Catalonia through the SGR grant (2014-SGR-1535).

Author information

Authors and Affiliations



A.Y.N., P.A.G. and R.H. conceived the study. S.V. patterned the graphene nanoresonators. A.C. and A.P. prepared the CVD graphene. A.Z., F.C. and L.E.H. coordinated the fabrication. P.A.G. and S.M. performed the experiments. A.Y.N. developed the theory and performed the simulations. A.Y.N., P.A.G., F.H.L.K. and R.H. analysed the data and discussed the results. A.Y.N. and R.H. wrote the manuscript with the input of P.A.G. All authors contributed to the scientific discussion and manuscript revisions.

Corresponding authors

Correspondence to A. Y. Nikitin or R. Hillenbrand.

Ethics declarations

Competing interests

R.H. is a co-founder of Neaspec GmbH, a company producing scattering-type scanning near-field optical microscope systems such as the one used in this study. All other authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 905 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, A., Alonso-González, P., Vélez, S. et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nature Photon 10, 239–243 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing