Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions

Abstract

Molecular electronic control over plasmons offers a promising route for on-chip integrated molecular plasmonic devices for information processing and computing. To move beyond the currently available technologies and to miniaturize plasmonic devices, molecular electronic plasmon sources are required. Here, we report on-chip molecular electronic plasmon sources consisting of tunnel junctions based on self-assembled monolayers sandwiched between two metallic electrodes that excite localized plasmons, and surface plasmon polaritons, with tunnelling electrons. The plasmons originate from single, diffraction-limited spots within the junctions, follow power-law distributed photon statistics, and have well-defined polarization orientations. The structure of the self-assembled monolayer and the applied bias influence the observed polarization. We also show molecular electronic control of the plasmon intensity by changing the chemical structure of the molecules and by bias-selective excitation of plasmons using molecular diodes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SAM-based tunnel junctions.
Figure 2: Molecular electronic excitation of plasmons.
Figure 3: Blinking of plasmon sources.
Figure 4: Molecular electronic control over polarization of the plasmon sources.
Figure 5: Bias-selective plasmon excitation based on molecular diodes.

References

  1. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  2. Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nature Photon. 1, 641–648 (2007).

    Article  ADS  Google Scholar 

  3. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    Article  ADS  Google Scholar 

  4. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    Article  ADS  Google Scholar 

  5. Koller, D. M. et al. Organic plasmon-emitting diode. Nature Photon. 2, 684–687 (2008).

    Article  ADS  Google Scholar 

  6. Neutens, P., Lagae, L., Borghs, G. & Dorpe, P. V. Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides. Nano Lett. 10, 1429–1432 (2010).

    Article  ADS  Google Scholar 

  7. Fan, P. et al. An electrically-driven GaAs nanowire surface plasmon source. Nano Lett. 12, 4943–4947 (2012).

    Article  ADS  Google Scholar 

  8. Huang, K. C. Y. et al. Electrically driven subwavelength optical nanocircuits. Nature Photon. 8, 244–249 (2014).

    Article  ADS  Google Scholar 

  9. Costantini, D. et al. In situ generation of surface plasmon polaritons using a near-infrared laser diode. Nano Lett. 12, 4693–4697 (2012).

    Article  ADS  Google Scholar 

  10. Walters, R. J., van Loon, R. V. A., Brunets, I., Schmitz, J. & Polman, A. A silicon-based electrical source of surface plasmon polaritons. Nature Mater. 9, 21–25 (2009).

    Article  ADS  Google Scholar 

  11. Rai, P. et al. Electrical excitation of surface plasmons by an individual carbon nanotube transistor. Phys. Rev. Lett. 111, 026804 (2013).

    Article  ADS  Google Scholar 

  12. Lambe, J. & McCarthy, S. L. Light emission from inelastic electron tunneling. Phys. Rev. Lett. 37, 923 (1976).

    Article  ADS  Google Scholar 

  13. Dawson, P., Walmsley, D. G., Quinn, H. A. & Ferguson, A. J. L. Observation and explanation of light-emission spectra from statistically rough Cu, Ag, and Au tunnel junctions. Phys. Rev. B 30, 3164 (1984).

    Article  ADS  Google Scholar 

  14. Ushioda, S. Light emission associated with tunneling phenomena. J. Lumin. 47, 131–136 (1990).

    Article  Google Scholar 

  15. Berndt, R., Gimzewski, J. K. & Johansson, P. Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces. Phys. Rev. Lett. 67, 3796 (1991).

    Article  ADS  Google Scholar 

  16. Schull, G., Néel, N., Johansson, P. & Berndt, R. Electron–plasmon and electron–electron interactions at a single atom contact. Phys. Rev. Lett. 102, 057401 (2009).

    Article  ADS  Google Scholar 

  17. Chen, C., Bobisch, C. A. & Ho, W. Visualization of Fermi's Golden Rule through imaging of light emission from atomic silver chains. Science 325, 981–985 (2009).

    Article  ADS  Google Scholar 

  18. Wang, T., Boer-Duchemin, E., Zhang, Y., Comtet, G. & Dujardin, G. Excitation of propagating surface plasmons with a scanning tunnelling microscope. Nanotechnology 22, 175201 (2011).

    Article  ADS  Google Scholar 

  19. Bharadwaj, P., Bouhelier, A. & Novotny, L. Electrical excitation of surface plasmons. Phys. Rev. Lett. 106, 226802 (2011).

    Article  ADS  Google Scholar 

  20. Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).

    Article  ADS  Google Scholar 

  21. Rossel, F., Pivetta, M., Patthey, F. & Schneider, W. D. Plasmon enhanced luminescence from fullerene molecules excited by local electron tunneling. Opt. Express 17, 2714–2721 (2009).

    Article  ADS  Google Scholar 

  22. Reecht, G. et al. Electroluminescence of a polythiophene molecular wire suspended between a metallic surface and the tip of a scanning tunneling microscope. Phys. Rev. Lett. 112, 047403 (2014).

    Article  ADS  Google Scholar 

  23. Schneider, N. L., Lü, J. T., Brandbyge, M. & Berndt, R. Light emission probing quantum shot noise and charge fluctuations at a biased molecular junction. Phys. Rev. Lett. 109, 186601 (2012).

    Article  ADS  Google Scholar 

  24. Geng, F. et al. Modulation of nanocavity plasmonic emission by local molecular states of C60 on Au(111). Opt. Express 20, 26725–26735 (2012).

    Article  ADS  Google Scholar 

  25. Lutz, T. et al. Molecular orbital gates for plasmon excitation. Nano Lett. 13, 2846–2850 (2013).

    Article  ADS  Google Scholar 

  26. Shafir, D. et al. Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343–346 (2012).

    Article  ADS  Google Scholar 

  27. Novotny, L. & van Hulst, N. Antennas for light. Nature Photon. 5, 83–90 (2011).

    Article  ADS  Google Scholar 

  28. Kern, J. et al. Electrically driven optical antennas. Nature Photon. 9, 582–586 (2015).

    Article  ADS  Google Scholar 

  29. Nijhuis, C. A., Reus, W. F. & Whitesides, G. M. Molecular rectification in metal–SAM–metal oxide–metal junctions. J. Am. Chem. Soc. 131, 17814–17827 (2009).

    Article  Google Scholar 

  30. Nerngchanmnong, N. et al. The role of van der Waals forces in the performance of molecular diodes. Nature Nanotech. 8, 113–118 (2013).

    Article  ADS  Google Scholar 

  31. Jeong, H. et al. Redox-induced asymmetric electrical characteristics of ferrocene–alkanethiolate molecular devices on rigid and flexible substrates. Adv. Funct. Mater. 24, 2472–2480 (2014).

    Article  Google Scholar 

  32. Tao, N. J. Electron transport in molecular junctions. Nature Nanotech. 1, 173–181 (2006).

    Article  ADS  Google Scholar 

  33. Galperin, M. & Nitzan, A. Molecular optoelectronics: the interaction of molecular conduction junctions with light. Phys. Chem. Chem. Phys. 14, 9421–9438 (2012).

    Article  Google Scholar 

  34. Tan, S. F. et al. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343, 1496–1499 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  35. Wan, A., Jiang, L., Sangeeth, C. S. S. & Nijhuis, C. A. Reversible soft top-contacts to yield molecular junctions with precise and reproducible electrical characteristics. Adv. Funct. Mater. 24, 4442–4456 (2014).

    Article  Google Scholar 

  36. Chiechi, R. C., Weiss, E. A., Dickey, M. D. & Whitesides, G. M. Eutectic gallium–indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew. Chem. Int. Ed. 47, 142–144 (2007).

    Article  Google Scholar 

  37. Reus, W. F., Thuo, M. M., Shapiro, N. D., Nijhuis, C. A. & Whitesides, G. M. The SAM, not the electrodes, dominates charge transport in metal-monolayer//Ga2O3/gallium-indium eutectic junctions. ACS Nano 6, 4806–4822 (2012).

    Article  Google Scholar 

  38. Simeone, F. C. et al. Defining the value of injection current and effective electrical contact area for EGaIn-based molecular tunneling junctions. J. Am. Chem. Soc. 135, 18131–18144 (2013).

    Article  Google Scholar 

  39. Wimbush, K. S. et al. Bias induced transition from an ohmic to a non-ohmic interface in supramolecular tunneling junctions with Ga2O3/EGaIn top electrodes. Nanoscale 6, 11246–11258 (2014).

    Article  ADS  Google Scholar 

  40. Jiang, L., Sangeeth, C. S. S., Wan, A., Vilan, A. & Nijhuis, C. A. Defect scaling with contact area in EGaIn-based junctions: impact on quality, Joule heating, and apparent injection current. J. Phys. Chem. C 119, 960–969 (2015).

    Article  Google Scholar 

  41. Salomon, A. et al. Comparison of electronic transport measurements on organic molecules. Adv. Mater. 15, 1881–1890 (2003).

    Article  Google Scholar 

  42. Akkerman, H. B. & de Boer, B. Electrical conduction through single molecules and self-assembled monolayers. J. Phys. Condens. Matter 20, 013001 (2008).

    Article  ADS  Google Scholar 

  43. Nazin, G. V., Wu, S. W. & Ho, W. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope. Proc. Natl Acad. Sci. USA 102, 8832–8837 (2005).

    Article  ADS  Google Scholar 

  44. Yuan, L. et al. Controlling the direction of rectification in a molecular diode. Nature Commun. 6, 6324 (2015).

    Article  ADS  Google Scholar 

  45. Sangeeth, C. S. S., Wan, A. & Nijhuis, C. A. Equivalent circuits of a self-assembled monolayer-based tunnel junction determined by impedance spectroscopy. J. Am. Chem. Soc. 136, 11134–11144 (2014).

    Article  Google Scholar 

  46. Frantsuzov, P., Kuno, M., Jankó, B. & Marcus, R. A. Universal emission intermittency in quantum dots, nanorods and nanowires. Nature Phys. 4, 519–522 (2008).

    Article  Google Scholar 

  47. Wassel, R. A., Fuierer, R. R., Kim, N. & Gorman, C. B. Stochastic variation in conductance on the nanometer scale: a general phenomenon. Nano Lett. 3, 1617–1620 (2003).

    Article  ADS  Google Scholar 

  48. Troisi, A. & Ratner, M. A. Molecular signatures in the transport properties of molecular wire junctions: what makes a junction ‘molecular’. Small 2, 172–181 (2006).

    Article  Google Scholar 

  49. Hutchison, J. A. et al. A surface-bound molecule that undergoes optically biased Brownian rotation. Nature Nanotech. 9, 131–136 (2014).

    Article  ADS  Google Scholar 

  50. Haag, R., Rampi, M. A., Holmlin, R. E. & Whitesides, G. M. Electrical breakdown of aliphatic and aromatic self-assembled monolayers used as nanometer-thick organic dielectrics. J. Am. Chem. Soc. 121, 7895–7906 (1999).

    Article  Google Scholar 

  51. McConnell, H. M. Intramolecular charge transfer in aromatic free radicals. J. Chem. Phys. 35, 508–515 (1961).

    Article  ADS  Google Scholar 

  52. Song, H. W., Lee, H. Y. & Lee, T. H. Intermolecular chain-to-chain tunneling in metal–alkanethiol–metal junctions. J. Am. Chem. Soc. 129, 3806–3807 (2007).

    Article  Google Scholar 

  53. Aizpurua, J., Apell, S. P. & Berndt, R. Role of tip shape in light emission from the scanning tunneling microscope. Phys. Rev. B 62, 2065–2073 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Research Foundation (NRF) under the Competitive Research Programme (CRP) (award no. NRF-CRP 8-2011-07). The authors also acknowledge NRF for supporting this research under the Prime Minister’s Office, Singapore under its Medium Sized Centre Programme. N.T. acknowledges the Institute of Materials Research and Engineering for providing financial support (grant no. IMRE/15-1P1105). H.S.C. acknowledges support from the A*STAR Computational Resource Centre through the use of its high-performance computing facilities. S.S. thanks J. Enderlein (Georg-August-Universität Göttingen) for discussions on developing the Matlab code to calculate the defocused images from any arbitrary far-field radiation pattern.

Author information

Authors and Affiliations

Authors

Contributions

C.A.N. and N.T. conceived and designed the experiments. W.D. fabricated the samples. W.D. and T.W. performed the wide-field experiments and analysed the data. W.D., T.W., R.L. and N.T. performed the confocal experiments. H.S.C., L.W., S.S. and W.K.P. performed the theoretical calculations. L.J.W. synthesized S-OPE-Fc molecules. T.W., N.T. and C.A.N. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Nikodem Tomczak or Christian A. Nijhuis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4745 kb)

Supplementary information

Supplementary Movie 1 (AVI 1502 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Wang, T., Chu, HS. et al. On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions. Nature Photon 10, 274–280 (2016). https://doi.org/10.1038/nphoton.2016.43

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.43

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing