Abstract
The angular momentum of light can be described by positions on a higher-order Poincaré sphere, where superpositions of spin and orbital angular momentum states give rise to laser beams that have many applications, from microscopy to materials processing. Many techniques exist to create such beams but none so far allow their creation at the source. Here we report on a new class of laser that is able to generate all states on the higher-order Poincaré sphere. We exploit geometric phase control inside a laser cavity to map polarization to orbital angular momentum, demonstrating that the orbital angular momentum degeneracy of a standard laser cavity may be broken, producing pure orbital angular momentum beams, and that generalized vector vortex beams may be created with high purity at the source. This work paves the way to new lasers for structured light based on intracavity geometric phase control.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
An achromatic metafiber for focusing and imaging across the entire telecommunication range
Nature Communications Open Access 19 July 2022
-
Towards higher-dimensional structured light
Light: Science & Applications Open Access 05 July 2022
-
Vortex laser arrays with topological charge control and self-healing of defects
Nature Photonics Open Access 11 April 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Milione, G., Sztul, H. I., Nolan, D. A. & Alfano, R. R. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 107, 053601 (2011).
Milione, G., Evans, S., Nolan, D. A. & Alfano, R. R. Higher-order Pancharatnam–Berry phase and the angular momentum of light. Phys. Rev. Lett. 108, 190401 (2012).
Holleczek, A., Aiello, A., Gabriel, C., Marquardt, C. & Leuchs, G. Classical and quantum properties of cylindrically polarized states of light. Opt. Express 19, 9714–9736 (2011).
Bomzon, Z., Kleiner, V. & Hasman, E. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt. Lett. 26, 1424–1426 (2001).
Niv, A., Biener, G., Kleiner, V. & Hasman, E. Manipulation of the Pancharatnam phase in vectorial vortices. Opt. Express 14, 4208–4220 (2006).
Gregg, P. et al. Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber. Opt. Lett. 40, 1729–1732 (2015).
Lavery, M. P. J. et al. Space division multiplexing in a basis of vector modes. in Proc. European Conf. Opt. Commun. We.3.6.1 (IEEE, 2014); http://dx.doi.org/10.1109/ECOC.2014.6964136
Milione, G. et al. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. Opt. Lett. 40, 1980–1983 (2015).
Cardano, F. et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges Appl. Opt. 51, C1–C6 (2012).
Liu, Y. et al. Realization of polarization evolution on higher-order Poincaré sphere with metasurface. Appl. Phys. Lett. 104, 191110-1–191110-4 (2014).
Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 1, 1–57 (2009).
Hamazaki, J. et al. Optical-vortex laser ablation. Opt. Express 18, 2144–2151 (2010).
Toyoda, K. et al. Transfer of light helicity to nanostructures. Phys. Rev. Lett. 110, 143603 (2013).
Weber, R. et al. Effects of radial and tangential polarization in laser material processing. Phys. Proc. 27, 21–30 (2011).
Wong, L. J. & Kartner, F. X. Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam. Opt. Express 18, 25035–25051 (2010).
Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).
Padgett, M. J. & Bowman, R. Tweezers with a twist. Nature Photon. 5, 343–348 (2011).
Hao, X., Kuang, C., Wang, T. & Liu, X. Effects of polarization on the de-excitation dark focal spot in STED microscopy. J. Opt. 12, 115707 (2010).
Chen, R., Agarwal, K., Sheppard, C. J. R. & Chen, X. Imaging using cylindrical vector beams in a highnumerical-aperture microscopy system. Opt. Lett. 38, 3111–3114 (2013).
Ren, H., Lin, Y.-H. & Wu, S.-T. Linear to axial or radial polarization conversion using a liquid crystal gel. Appl. Phys. Lett. 86, 051114 (2006).
Bashkansky, M., Park, D. & Fatemi, F. K. Azimuthally and radially polarized light with a nematic SLM. Opt. Express 18, 212–217 (2010).
Machavariani, G., Lumer, Y., Moshe, I., Meir, A. & Jackel, S. Efficient extracavity generation of radially and azimuthally polarized beams. Opt. Lett. 32, 1468–1470 (2007).
Lai, W. J. et al. Generation of radially polarized beam with a segmented spiral varying retarder. Opt. Express 16, 15694–15699 (2008).
Moshe, I., Jackel, S. & Meir, A. Production of radially or azimuthally polarised beams in solid-state lasers and the elimination of thermally induced birefringence effects. Opt. Lett. 28, 807–809 (2003).
Yonezawa, Y., Kozawa, Y. & Sato, S. Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal. Opt. Lett. 31, 2151–2153 (2006).
Kawauchi, H., Kozawa, Y. & Sato, S. Generation of radially polarized Ti:sapphire laser beam using a c-cut crystal. Opt. Lett. 33, 1984–1986 (2008).
Ito, A., Kozawa, Y. & Sato, S. Selective oscillation of radially and azimuthally polarised laser beam induced by thermal birefringence and lensing. J. Opt. Soc. Am. B 26, 708–712 (2009).
Kozawa, Y. & Sato, S. Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt. Lett. 30, 3063–3065 (2005).
Bisson, J.-F., Li, J., Ueda, K. & Senatsky, Y. Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon. Opt. Express 14, 3304–3311 (2006).
Chang, K.-C., Lin, T. & Wei, M.-D. Generation of azimuthally and radially polarized off-axis beams with an intracavity large-apex-angle axicon. Opt. Express 21, 16035–16042 (2013).
Wei, M.-D., Lai, Y.-S. & Chang, K.-C. Generation of a radially polarized laser beam in a single microchip Nd:YVO4 laser. Opt. Lett. 38, 2443–2445 (2013).
Vyas, S., Kozawa, Y. & Sato, S. Generation of radially polarized Bessel-Gaussian beams from c-cut Nd:YVO4 laser. Opt. Lett. 39, 1101–1104 (2014).
Fang, Z., Xia, K., Yao, Y. & Li, J. Radially polarized and passively Q-switched Nd:YAG laser under annular-shaped pumping. IEEE J. Sel. Top. Quant. Elec. 21, 1600406 (2015).
Padgett, M. J. & Courtial, J. Poincaré-sphere equivalent for light beams containing orbital angular momentum. Opt. Lett. 249, 430–432 (1999).
Yao, A. M., & Padgett, M. J. Orbital angular momentum origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011).
Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photon. 6, 488–496 (2012).
Senatsky, Y. et al. Laguerre-Gaussian modes selection in diode-pumped solid-state lasers. Opt. Rev. 19, 201–221 (2012).
Lin, D., Daniel, J. M. O. & Clarkson, W. A. Controlling the handedness of directly excited Laguerre-Gaussian modes in a solid-state laser. Opt. Lett. 39, 3903–3906 (2014).
Kim, D. J. & Kim, J. W. Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser. Opt. Lett. 40, 399–402 (2015).
Lin, D. & Clarkson, W. A. Polarization-dependent transverse mode selection in an Yb-doped fiber laser. Opt. Lett. 40, 498–501 (2015).
Lu, T. & Wu, Y. Observation and analysis of single and multiple high-order Laguerre-Gaussian beams generated from a hemi-cylindrical cavity with general astigmatism. Opt. Express 21, 28496–28506 (2013).
Litvin, I. A., Ngcobo, S., Naidoo, D., Ait-Ameur, K. & Forbes, A. Doughnut laser beam as an incoherent superposition of two petal beams. Opt. Lett. 39, 704–707 (2014).
Li, H. et al. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica 2, 547–552 (2015).
Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–336 (2012).
Hodgson, N. & Weber, H. Laser Resonators and Beam Propagation Ch. 3 (Springer, 2005).
Marucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).
Flamm, D., Naidoo, D., Schulze, C., Forbes, A. & Duparre, M. Mode analysis with a spatial light modulator as a correlation filter. Opt. Lett. 37, 2478–2480 (2012).
Naidoo, D., Ait-Ameur, K., Brunel, M. & Forbes, A. Intra-cavity generation of superpositions of Laguerre-Gaussian beams. Appl. Phys. B 106, 683–690 (2012).
Karimi, E., Zito, G., Piccirillo, B., Marrucci, L. & Santamato, E. Hypergeometric-Gaussian modes. Opt. Lett. 32, 3053–3055 (2007).
Ngcobo, S., Litvin, I., Burger, L. & Forbes, A. A digital laser for on-demand laser modes. Nature Commun. 4, 2289 (2013).
Author information
Authors and Affiliations
Contributions
A.F. conceived the idea and supervised the project; D.N. performed the experiments with assistance from I.L. and A.D.; F.S.R. and I.L. performed the mathematical analysis; D.N. performed the data analysis; B.P. and L.M. manufactured the q-plate and assisted with analysis; A.F. and D.N. wrote the paper with inputs from all co-authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 457 kb)
Rights and permissions
About this article
Cite this article
Naidoo, D., Roux, F., Dudley, A. et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nature Photon 10, 327–332 (2016). https://doi.org/10.1038/nphoton.2016.37
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2016.37
This article is cited by
-
Towards higher-dimensional structured light
Light: Science & Applications (2022)
-
Spin–orbit microlaser emitting in a four-dimensional Hilbert space
Nature (2022)
-
Vortex laser arrays with topological charge control and self-healing of defects
Nature Photonics (2022)
-
An achromatic metafiber for focusing and imaging across the entire telecommunication range
Nature Communications (2022)
-
Metasurface optics for on-demand polarization transformations along the optical path
Nature Photonics (2021)