Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Controlled generation of higher-order Poincaré sphere beams from a laser

Abstract

The angular momentum of light can be described by positions on a higher-order Poincaré sphere, where superpositions of spin and orbital angular momentum states give rise to laser beams that have many applications, from microscopy to materials processing. Many techniques exist to create such beams but none so far allow their creation at the source. Here we report on a new class of laser that is able to generate all states on the higher-order Poincaré sphere. We exploit geometric phase control inside a laser cavity to map polarization to orbital angular momentum, demonstrating that the orbital angular momentum degeneracy of a standard laser cavity may be broken, producing pure orbital angular momentum beams, and that generalized vector vortex beams may be created with high purity at the source. This work paves the way to new lasers for structured light based on intracavity geometric phase control.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: HOP sphere representation of vector vortex beams.
Figure 2: Laser concept.
Figure 3: Mode purity of OAM beams.
Figure 4: Measured HOP sphere beams.
Figure 5: HOP sphere beams with a larger topological charge.

References

  1. Milione, G., Sztul, H. I., Nolan, D. A. & Alfano, R. R. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 107, 053601 (2011).

    Article  ADS  Google Scholar 

  2. Milione, G., Evans, S., Nolan, D. A. & Alfano, R. R. Higher-order Pancharatnam–Berry phase and the angular momentum of light. Phys. Rev. Lett. 108, 190401 (2012).

    Article  ADS  Google Scholar 

  3. Holleczek, A., Aiello, A., Gabriel, C., Marquardt, C. & Leuchs, G. Classical and quantum properties of cylindrically polarized states of light. Opt. Express 19, 9714–9736 (2011).

    Article  ADS  Google Scholar 

  4. Bomzon, Z., Kleiner, V. & Hasman, E. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt. Lett. 26, 1424–1426 (2001).

    Article  ADS  Google Scholar 

  5. Niv, A., Biener, G., Kleiner, V. & Hasman, E. Manipulation of the Pancharatnam phase in vectorial vortices. Opt. Express 14, 4208–4220 (2006).

    Article  ADS  Google Scholar 

  6. Gregg, P. et al. Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber. Opt. Lett. 40, 1729–1732 (2015).

    Article  ADS  Google Scholar 

  7. Lavery, M. P. J. et al. Space division multiplexing in a basis of vector modes. in Proc. European Conf. Opt. Commun. We.3.6.1 (IEEE, 2014); http://dx.doi.org/10.1109/ECOC.2014.6964136

  8. Milione, G. et al. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. Opt. Lett. 40, 1980–1983 (2015).

    Article  ADS  Google Scholar 

  9. Cardano, F. et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges Appl. Opt. 51, C1–C6 (2012).

    Article  Google Scholar 

  10. Liu, Y. et al. Realization of polarization evolution on higher-order Poincaré sphere with metasurface. Appl. Phys. Lett. 104, 191110-1–191110-4 (2014).

    ADS  Google Scholar 

  11. Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 1, 1–57 (2009).

    Article  Google Scholar 

  12. Hamazaki, J. et al. Optical-vortex laser ablation. Opt. Express 18, 2144–2151 (2010).

    Article  ADS  Google Scholar 

  13. Toyoda, K. et al. Transfer of light helicity to nanostructures. Phys. Rev. Lett. 110, 143603 (2013).

    Article  ADS  Google Scholar 

  14. Weber, R. et al. Effects of radial and tangential polarization in laser material processing. Phys. Proc. 27, 21–30 (2011).

    Article  ADS  Google Scholar 

  15. Wong, L. J. & Kartner, F. X. Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam. Opt. Express 18, 25035–25051 (2010).

    Article  ADS  Google Scholar 

  16. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  ADS  Google Scholar 

  17. Padgett, M. J. & Bowman, R. Tweezers with a twist. Nature Photon. 5, 343–348 (2011).

    Article  ADS  Google Scholar 

  18. Hao, X., Kuang, C., Wang, T. & Liu, X. Effects of polarization on the de-excitation dark focal spot in STED microscopy. J. Opt. 12, 115707 (2010).

    Article  ADS  Google Scholar 

  19. Chen, R., Agarwal, K., Sheppard, C. J. R. & Chen, X. Imaging using cylindrical vector beams in a highnumerical-aperture microscopy system. Opt. Lett. 38, 3111–3114 (2013).

    Article  ADS  Google Scholar 

  20. Ren, H., Lin, Y.-H. & Wu, S.-T. Linear to axial or radial polarization conversion using a liquid crystal gel. Appl. Phys. Lett. 86, 051114 (2006).

    Article  ADS  Google Scholar 

  21. Bashkansky, M., Park, D. & Fatemi, F. K. Azimuthally and radially polarized light with a nematic SLM. Opt. Express 18, 212–217 (2010).

    Article  ADS  Google Scholar 

  22. Machavariani, G., Lumer, Y., Moshe, I., Meir, A. & Jackel, S. Efficient extracavity generation of radially and azimuthally polarized beams. Opt. Lett. 32, 1468–1470 (2007).

    Article  ADS  Google Scholar 

  23. Lai, W. J. et al. Generation of radially polarized beam with a segmented spiral varying retarder. Opt. Express 16, 15694–15699 (2008).

    Article  ADS  Google Scholar 

  24. Moshe, I., Jackel, S. & Meir, A. Production of radially or azimuthally polarised beams in solid-state lasers and the elimination of thermally induced birefringence effects. Opt. Lett. 28, 807–809 (2003).

    Article  ADS  Google Scholar 

  25. Yonezawa, Y., Kozawa, Y. & Sato, S. Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal. Opt. Lett. 31, 2151–2153 (2006).

    Article  ADS  Google Scholar 

  26. Kawauchi, H., Kozawa, Y. & Sato, S. Generation of radially polarized Ti:sapphire laser beam using a c-cut crystal. Opt. Lett. 33, 1984–1986 (2008).

    Article  ADS  Google Scholar 

  27. Ito, A., Kozawa, Y. & Sato, S. Selective oscillation of radially and azimuthally polarised laser beam induced by thermal birefringence and lensing. J. Opt. Soc. Am. B 26, 708–712 (2009).

    Article  ADS  Google Scholar 

  28. Kozawa, Y. & Sato, S. Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt. Lett. 30, 3063–3065 (2005).

    Article  ADS  Google Scholar 

  29. Bisson, J.-F., Li, J., Ueda, K. & Senatsky, Y. Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon. Opt. Express 14, 3304–3311 (2006).

    Article  ADS  Google Scholar 

  30. Chang, K.-C., Lin, T. & Wei, M.-D. Generation of azimuthally and radially polarized off-axis beams with an intracavity large-apex-angle axicon. Opt. Express 21, 16035–16042 (2013).

    Article  ADS  Google Scholar 

  31. Wei, M.-D., Lai, Y.-S. & Chang, K.-C. Generation of a radially polarized laser beam in a single microchip Nd:YVO4 laser. Opt. Lett. 38, 2443–2445 (2013).

    Article  ADS  Google Scholar 

  32. Vyas, S., Kozawa, Y. & Sato, S. Generation of radially polarized Bessel-Gaussian beams from c-cut Nd:YVO4 laser. Opt. Lett. 39, 1101–1104 (2014).

    Article  ADS  Google Scholar 

  33. Fang, Z., Xia, K., Yao, Y. & Li, J. Radially polarized and passively Q-switched Nd:YAG laser under annular-shaped pumping. IEEE J. Sel. Top. Quant. Elec. 21, 1600406 (2015).

    Google Scholar 

  34. Padgett, M. J. & Courtial, J. Poincaré-sphere equivalent for light beams containing orbital angular momentum. Opt. Lett. 249, 430–432 (1999).

    Article  ADS  Google Scholar 

  35. Yao, A. M., & Padgett, M. J. Orbital angular momentum origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011).

    Article  Google Scholar 

  36. Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photon. 6, 488–496 (2012).

    Article  ADS  Google Scholar 

  37. Senatsky, Y. et al. Laguerre-Gaussian modes selection in diode-pumped solid-state lasers. Opt. Rev. 19, 201–221 (2012).

    Article  Google Scholar 

  38. Lin, D., Daniel, J. M. O. & Clarkson, W. A. Controlling the handedness of directly excited Laguerre-Gaussian modes in a solid-state laser. Opt. Lett. 39, 3903–3906 (2014).

    Article  ADS  Google Scholar 

  39. Kim, D. J. & Kim, J. W. Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser. Opt. Lett. 40, 399–402 (2015).

    Article  ADS  Google Scholar 

  40. Lin, D. & Clarkson, W. A. Polarization-dependent transverse mode selection in an Yb-doped fiber laser. Opt. Lett. 40, 498–501 (2015).

    Article  ADS  Google Scholar 

  41. Lu, T. & Wu, Y. Observation and analysis of single and multiple high-order Laguerre-Gaussian beams generated from a hemi-cylindrical cavity with general astigmatism. Opt. Express 21, 28496–28506 (2013).

    Article  ADS  Google Scholar 

  42. Litvin, I. A., Ngcobo, S., Naidoo, D., Ait-Ameur, K. & Forbes, A. Doughnut laser beam as an incoherent superposition of two petal beams. Opt. Lett. 39, 704–707 (2014).

    Article  ADS  Google Scholar 

  43. Li, H. et al. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica 2, 547–552 (2015).

    Article  ADS  Google Scholar 

  44. Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–336 (2012).

    Article  ADS  Google Scholar 

  45. Hodgson, N. & Weber, H. Laser Resonators and Beam Propagation Ch. 3 (Springer, 2005).

    Book  Google Scholar 

  46. Marucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).

    Article  ADS  Google Scholar 

  47. Flamm, D., Naidoo, D., Schulze, C., Forbes, A. & Duparre, M. Mode analysis with a spatial light modulator as a correlation filter. Opt. Lett. 37, 2478–2480 (2012).

    Article  ADS  Google Scholar 

  48. Naidoo, D., Ait-Ameur, K., Brunel, M. & Forbes, A. Intra-cavity generation of superpositions of Laguerre-Gaussian beams. Appl. Phys. B 106, 683–690 (2012).

    Article  ADS  Google Scholar 

  49. Karimi, E., Zito, G., Piccirillo, B., Marrucci, L. & Santamato, E. Hypergeometric-Gaussian modes. Opt. Lett. 32, 3053–3055 (2007).

    Article  ADS  Google Scholar 

  50. Ngcobo, S., Litvin, I., Burger, L. & Forbes, A. A digital laser for on-demand laser modes. Nature Commun. 4, 2289 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.F. conceived the idea and supervised the project; D.N. performed the experiments with assistance from I.L. and A.D.; F.S.R. and I.L. performed the mathematical analysis; D.N. performed the data analysis; B.P. and L.M. manufactured the q-plate and assisted with analysis; A.F. and D.N. wrote the paper with inputs from all co-authors.

Corresponding author

Correspondence to Andrew Forbes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 457 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naidoo, D., Roux, F., Dudley, A. et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nature Photon 10, 327–332 (2016). https://doi.org/10.1038/nphoton.2016.37

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing