Letter | Published:

Broadband dispersion-engineered microresonator on a chip

Nature Photonics volume 10, pages 316320 (2016) | Download Citation

Abstract

The control of dispersion in fibre optical waveguides is of critical importance to optical fibre communications systems1,2 and more recently for continuum generation from the ultraviolet to the mid-infrared3,4,5. The wavelength at which the group velocity dispersion crosses zero can be set by varying the fibre core diameter or index step2,6,7,8. Moreover, sophisticated methods to manipulate higher-order dispersion so as to shape and even flatten the dispersion over wide bandwidths are possible using multi-cladding fibres9,10,11. Here we introduce design and fabrication techniques that allow analogous dispersion control in chip-integrated optical microresonators, and thereby demonstrate higher-order, wide-bandwidth dispersion control over an octave of spectrum. Importantly, the fabrication method we employ for dispersion control simultaneously permits optical Q factors above 100 million, which is critical for the efficient operation of nonlinear optical oscillators. Dispersion control in high-Q systems has become of great importance in recent years with increased interest in chip-integrable optical frequency combs12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Nonlinear Fiber Optics (Academic, 2007).

  2. 2.

    & A review of single-mode fibers with modified dispersion characteristics. J. Lightwave Technol. 4, 967–979 (1986).

  3. 3.

    , & Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000).

  4. 4.

    , & Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

  5. 5.

    et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photon. 8, 830–834 (2014).

  6. 6.

    , & Tailoring zero chromatic dispersion into the 1.5–1.6 μm low-loss spectral region of single-mode fibres. Electron. Lett. 15, 334–335 (1979).

  7. 7.

    & Zero total dispersion in step-index monomode fibres at 1.30 and 1.55 μm. Electron. Lett. 15, 396–397 (1979).

  8. 8.

    & Dispersion-free single-mode fibre in 1.5 μm wavelength region. Electron. Lett. 15, 476–478 (1979).

  9. 9.

    & Characteristics of a doubly clad optical fiber with a low-index inner cladding. IEEE J. Quant. Electron. 10, 879–887 (1974).

  10. 10.

    , & Low-loss quadruple-clad single-mode lightguides with dispersion below 2 ps/km-nm over the 1.281.65 μm wavelength range. Electron. Lett. 18, 1023–1024 (1982).

  11. 11.

    & Low-dispersion single-mode silica fibre with undoped core and three F-doped claddings. Electron. Lett. 20, 423–424 (1984).

  12. 12.

    et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

  13. 13.

    , , , & Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nature Photon. 3, 529–533 (2009).

  14. 14.

    , & Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

  15. 15.

    et al. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett. 107, 063901 (2011).

  16. 16.

    et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

  17. 17.

    et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photon. 6, 480–487 (2012).

  18. 18.

    , & Route to stabilized ultrabroadband microresonator-based frequency combs. Opt. Lett. 38, 3478–3481 (2013).

  19. 19.

    , , & Modeling of octave-spanning Kerr frequency combs using a generalized mean-field lugiato–lefever model. Opt. Lett. 38, 37–39 (2013).

  20. 20.

    & Spatiotemporal Lugiato–Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A 87, 053852 (2013).

  21. 21.

    , , & Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett. 109, 233901 (2012).

  22. 22.

    , , & Self-injection locking and phase-locked states in microresonator-based optical frequency combs. Phys. Rev. Lett. 112, 043905 (2014).

  23. 23.

    et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).

  24. 24.

    et al. Phase steps and resonator detuning measurements in microresonator frequency combs. Nature Commun. 6, 5668 (2015).

  25. 25.

    et al. Temporal solitons in optical microresonators. Nature Photon. 8, 145–152 (2014).

  26. 26.

    et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113, 123901 (2014).

  27. 27.

    et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

  28. 28.

    et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nature Photon. 9, 594–600 (2015).

  29. 29.

    et al. Counting the cycles of light using a self-referenced optical microresonator. Optica 2, 706–711 (2015).

  30. 30.

    , , , & Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

  31. 31.

    et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nature Commun. 6, 7957 (2015).

  32. 32.

    & Dispersion engineering of crystalline resonators via microstructuring. Optica 2, 221–224 (2015).

  33. 33.

    Optical microcavities. Nature 424, 839–846 (2003).

  34. 34.

    et al. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nature Commun. 3, 765 (2012).

  35. 35.

    , & Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).

  36. 36.

    et al. An all-silicon Raman laser. Nature 433, 292–294 (2005).

  37. 37.

    et al. Chemically etched ultrahigh-Q resonator on a chip. Nature Photon. 6, 369–373 (2012).

  38. 38.

    et al. Phase-locking and pulse generation in multi-frequency Brillouin oscillator via four wave mixing. Sci. Rep. 4, 5032 (2014).

  39. 39.

    & Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nature Phys. 3, 430–435 (2007).

  40. 40.

    , & Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

  41. 41.

    , & Generation of optical frequency combs with a CaF2 resonator. Opt. Lett. 34, 878–880 (2009).

  42. 42.

    et al. Broadband parametric frequency comb generation with a 1-μm pump source. Opt. Express 20, 26935–26941 (2012).

  43. 43.

    , , , & Diamond nonlinear photonics. Nature Photon. 8, 369–374 (2014).

  44. 44.

    et al. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition. Opt. Express 20, 27661–27669 (2012).

  45. 45.

    , , & Dispersion engineering of high-Q silicon microresonators via thermal oxidation. Appl. Phys. Lett. 105, 031112 (2014).

  46. 46.

    , , & Sideband spectroscopy and dispersion measurement in microcavities. Opt. Express 20, 26337–26344 (2012).

  47. 47.

    Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205–1208 (1965).

  48. 48.

    et al. Self-referencing a continuous-wave laser with electro-optic modulation. Preprint at (2015).

Download references

Acknowledgements

We gratefully acknowledge support from the Defense Advanced Research Projects Agency under the QuASAR program, the National Institute of Standards and Technology, the Kavli Nanoscience Institute and the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore Foundation. D.C.C. acknowledges support from the NSF GRFP under Grant No. DGE 1144083.

Author information

Affiliations

  1. T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA

    • Ki Youl Yang
    • , Xu Yi
    • , Hansuek Lee
    • , Jiang Li
    • , Dong Yoon Oh
    •  & Kerry J. Vahala
  2. Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA

    • Katja Beha
    • , Daniel C. Cole
    • , Pascal Del'Haye
    • , Scott A. Diddams
    •  & Scott B. Papp

Authors

  1. Search for Ki Youl Yang in:

  2. Search for Katja Beha in:

  3. Search for Daniel C. Cole in:

  4. Search for Xu Yi in:

  5. Search for Pascal Del'Haye in:

  6. Search for Hansuek Lee in:

  7. Search for Jiang Li in:

  8. Search for Dong Yoon Oh in:

  9. Search for Scott A. Diddams in:

  10. Search for Scott B. Papp in:

  11. Search for Kerry J. Vahala in:

Contributions

K.Y.Y. and K.J.V. conceived the experiments. K.Y.Y. and D.Y.O. performed the numerical simulations. K.Y.Y. developed the fabrication method with assistance from H.L. K.Y.Y., K.B., D.C.C., P.D., S.A.D., S.B.P. and K.J.V. designed and built the EOM comb-assisted dispersion measurement set-up. K.Y.Y., K.B., D.C.C., X.Y., P.D. and J.L. performed the dispersion measurement, and K.Y.Y., K.B., D.C.C., X.Y., P.D., J.L., S.A.D., S.B.P. and K.J.V. analysed the data. K.Y.Y. and K.J.V. prepared the manuscript with input from all co-authors.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Kerry J. Vahala.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2016.36

Further reading