Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bulk heterojunction perovskite–PCBM solar cells with high fill factor

Abstract

An inverted bulk heterojunction perovskite–PCBM solar cell with a high fill factor of 0.82 and a power conversion efficiency of up to 16.0% was fabricated by a low-temperature two-step solution process. The cells exhibit no significant photocurrent hysteresis and their high short-circuit current density, fill factor and efficiency are attributed to the advantageous properties of the active layer, such as its high conductivity and the improved mobility and diffusion length of charge carriers. In particular, PCBM plays a critical role in improving the quality of the light-absorbing layer by filling pinholes and vacancies between perovskite grains, resulting in a film with large grains and fewer grain boundaries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The fabrication steps and architecture of the inverted perovskite solar cells with and without an additional layer of PCBM.
Figure 2: SEM images of the different film types.
Figure 3: Perovskite grain formation.
Figure 4: I–V curves of the perovskite cell with PCE of 16.0%.
Figure 5: Cross-sectional SEM images of films with different compositions.

Similar content being viewed by others

References

  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  Google Scholar 

  2. Best Research Cell Efficiency (NREL); http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (2015).

  3. Zhou, H. et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. Science 345, 542–546 (2014).

    Article  ADS  Google Scholar 

  4. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  ADS  Google Scholar 

  5. You, J. et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8, 1674–1680 (2014).

    Article  Google Scholar 

  6. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–320 (2013).

    Article  ADS  Google Scholar 

  7. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapor deposition. Nature 501, 395–398 (2013).

    Article  ADS  Google Scholar 

  8. Xiao, Z. et al. Efficient, high yield perovskite photovoltaic devices grown by inter-diffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 7, 2619–2623 (2014).

    Article  Google Scholar 

  9. Zhou, H. et al. Photovoltaics: interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  ADS  Google Scholar 

  10. Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Mater. 13, 897–903 (2014).

    Article  ADS  Google Scholar 

  11. Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  ADS  Google Scholar 

  12. Mitzi, D. B. Synthesis, structure, and properties of organic-inorganic perovskites and related materials. Prog. Inorg. Chem. 48, 1–121 (2007).

    Google Scholar 

  13. Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A. & Snaith, H. J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24, 151–157 (2014).

    Article  Google Scholar 

  14. Chiang, C.-H., Tseng, Z.-L. & Wu, C.-G. Planar heterojunction perovskite/ PC71BM solar cells with enhanced open-circuit voltage via (2/1)-step spin- coating process. J. Mater. Chem. A 2, 15897–15903 (2014).

    Article  Google Scholar 

  15. Wu, C.-G. et al. High efficiency stable inverted perovskite solar cells without current hysteresis. Energy Environ. Sci. 8, 2725-2733 (2015).

    Article  Google Scholar 

  16. Yang, B. et al. Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions. J. Am. Chem. Soc. 137, 9210–9213 (2015).

    Article  Google Scholar 

  17. Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nature Photon. 9, 106–112 (2015).

    Article  ADS  Google Scholar 

  18. Park, N.-G. Organometal perovskite light absorbers toward a 20% efficiency low cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013).

    Article  Google Scholar 

  19. McGehee, M. D. Materials science: fast-track solar cells. Nature 501, 323–325 (2013).

    Article  ADS  Google Scholar 

  20. Kazim, S., Nazeeruddin, M. K., Grätzel, M. & Ahmad, S. Perovskite as light harvester: A game changer in photovoltaics. Angew. Chem. Int. Ed. 53, 2812–2824 (2014).

    Article  Google Scholar 

  21. Hodes, G. & Cahen, D. Perovskite cells roll forward. Nature Photon. 8, 87–99 (2014).

    Article  ADS  Google Scholar 

  22. Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E. & Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Commun. 4, 2761 (2014).

    Article  ADS  Google Scholar 

  23. D'Innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nature Commun. 5, 3586 (2014).

    Article  ADS  Google Scholar 

  24. Heo, J. H., Han, H. J., Kim, D., Ahn, T. K. & Im, S. H. 18.1% hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells. Energ. Environ. Sci. 8, 1602–1608 (2015).

    Article  Google Scholar 

  25. Dong, Q. et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  ADS  Google Scholar 

  26. Wang, X. et al. Transient photocurrent and photovoltage studies on charge transport in dye sensitized solar cells made from the composites of TiO2 nanofibers and nanoparticles. Appl. Phys. Lett. 98, 082114 (2011).

    Article  ADS  Google Scholar 

  27. Xiao, Z. et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic device efficiency enhancement. Adv. Mater. 26, 6503–6509 (2014).

    Article  Google Scholar 

  28. O'Regan, B. C., Scully, S., Mayer, A., Palomares, E. & Durrant, J. The effect of Al2O3 barrier layers in TiO2/Dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements. J. Phys. Chem. B 109, 4616–4623 (2005).

    Article  Google Scholar 

  29. Snaith, H. J. et al. Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Lett. 7, 3372–3376 (2007).

    Article  ADS  Google Scholar 

  30. Nakade, S., Kambe, S., Kitamura, T., Wada, Y. & Yanagida, S. Effects of lithium ion density on electron transport in nanoporous TiO2 electrodes. J. Phys. Chem. B 105, 9150–9152 (2001).

    Article  Google Scholar 

  31. Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1514 (2014).

    Article  Google Scholar 

  32. Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012).

    Article  Google Scholar 

  33. Sun, S. et al. The origin of high efficiency in low-temperature solution- processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7, 399–407 (2014).

    Article  Google Scholar 

  34. Wang, Q. et al. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci. 7, 2359–2365 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Ministry of Science and Technology (MOST), Taiwan (grant number NSC101-2113-M-008-008-MY3) is greatly acknowledged. Device fabrication was carried out in the Advanced Laboratory of Accommodation and Research for Organic Photovoltaics, MOST, Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

C.H.C. conceived the experiments, carried out the device fabrication, characterizations and performance measurements. C.-G.W. directed the study, analysed data and wrote the manuscript. C.-G.W. wants to thank Z.L. Tseng for helping with the carrier mobility measurements.

Corresponding author

Correspondence to Chun-Guey Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1513 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, CH., Wu, CG. Bulk heterojunction perovskite–PCBM solar cells with high fill factor. Nature Photon 10, 196–200 (2016). https://doi.org/10.1038/nphoton.2016.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing