Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Background suppression in fluorescence nanoscopy with stimulated emission double depletion

Abstract

Stimulated emission depletion (STED) fluorescence nanoscopy is a powerful super-resolution imaging technique based on the confinement of fluorescence emission to the central subregion of an observation volume through de-excitation of fluorophores in the periphery via stimulated emission. Here, we introduce stimulated emission double depletion (STEDD) as a method to selectively remove artificial background intensity. In this approach, a first, conventional STED pulse is followed by a second, delayed Gaussian STED pulse that specifically depletes the central region, thus leaving only background. Thanks to time-resolved detection we can remove this background intensity voxel by voxel by taking the weighted difference of photons collected before and after the second STED pulse. STEDD thus yields background-suppressed super-resolved images as well as STED-based fluorescence correlation spectroscopy data. Furthermore, the proposed method is also beneficial when considering lower-power, less redshifted depletion pulses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Scheme of STEDD microscopy.
Figure 2: STEDD imaging of fluorescent beads.
Figure 3: 3D STEDD imaging of a fixed HeLa cell.
Figure 4: STEDD imaging of microtubules in live COS-7 cells.
Figure 5: STED–FCS and STEDD–FCS autocorrelation functions of dye diffusion.
Figure 6: 3D STEDD–FCS on annexin A5-mGarnet diffusing within a living HeLa cell.

References

  1. 1

    Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    ADS  Article  Google Scholar 

  2. 2

    Nienhaus, K. & Nienhaus, G. U. Where do we stand with super-resolution optical microscopy? J. Mol. Biol. 428, 308–322 (2016).

    Article  Google Scholar 

  3. 3

    Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission–depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    ADS  Article  Google Scholar 

  4. 4

    Hess, S. T., Girirajan, T. P. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  Google Scholar 

  5. 5

    Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    ADS  Article  Google Scholar 

  6. 6

    Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    Article  Google Scholar 

  7. 7

    Klar, T. A., Engel, E. & Hell, S. W. Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Phys. Rev. E 64, 066613 (2001).

    ADS  Article  Google Scholar 

  8. 8

    Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000).

    ADS  Article  Google Scholar 

  9. 9

    Tetin, S. Y. (ed.) Fluorescence Fluctuation Spectroscopy (FFS), Parts A and B (Methods in Enzymology Series 518 & 519, Academic Press, 2013).

  10. 10

    Vicidomini, G. et al. Sharper low-power STED nanoscopy by time gating. Nat. Methods 8, 571–573 (2011).

    Article  Google Scholar 

  11. 11

    Vicidomini, G. et al. STED nanoscopy with time-gated detection: theoretical and experimental aspects. PLoS ONE 8, e54421 (2013).

    ADS  Article  Google Scholar 

  12. 12

    Vicidomini, G., Moneron, G., Eggeling, C., Rittweger, E. & Hell, S. W. STED with wavelengths closer to the emission maximum. Opt. Express 20, 5225–5236 (2012).

    ADS  Article  Google Scholar 

  13. 13

    Ronzitti, E., Harke, B. & Diaspro, A. Frequency dependent detection in a STED microscope using modulated excitation light. Opt. Express 21, 210–219 (2013).

    ADS  Article  Google Scholar 

  14. 14

    Hernandez, I. C. et al. A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy. J. Biophoton. 7, 376–380 (2014).

    Article  Google Scholar 

  15. 15

    Lanzano, L. et al. Encoding and decoding spatio-temporal information for super-resolution microscopy. Nat. Commun. 6, 6701 (2015).

    ADS  Article  Google Scholar 

  16. 16

    Hanne, J. et al. STED nanoscopy with fluorescent quantum dots. Nat. Commun. 6, 7127 (2015).

    ADS  Article  Google Scholar 

  17. 17

    Wildanger, D., Medda, R., Kastrup, L. & Hell, S. W. A compact STED microscope providing 3D nanoscale resolution. J. Microsc. 236, 35–43 (2009).

    MathSciNet  Article  Google Scholar 

  18. 18

    Hense, A. et al. Monomeric garnet, a far-red fluorescent protein for live-cell STED imaging. Sci. Rep. 5, 18006 (2015).

    ADS  Article  Google Scholar 

  19. 19

    Wacker, S. A. et al. RITA, a novel modulator of Notch signalling, acts via nuclear export of RBP-J. EMBO J. 30, 43–56 (2011).

    Article  Google Scholar 

  20. 20

    Röcker, C., Pötzl, M., Zhang, F., Parak, W. J. & Nienhaus, G. U. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nanotech. 4, 577–580 (2009).

    ADS  Article  Google Scholar 

  21. 21

    Zemanova, L., Schenk, A., Valler, M. J., Nienhaus, G. U. & Heilker, R. Confocal optics microscopy for biochemical and cellular high-throughput screening. Drug Discov. Today 8, 1085–1093 (2003).

    Article  Google Scholar 

  22. 22

    Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009).

    ADS  Article  Google Scholar 

  23. 23

    Honigmann, A. et al. Scanning STED–FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat. Commun. 5, 5412 (2014).

    ADS  Article  Google Scholar 

  24. 24

    Mueller, V. et al. FCS in STED microscopy: studying the nanoscale of lipid membrane dynamics. Methods Enzymol. 519, 1–38 (2013).

    Article  Google Scholar 

  25. 25

    Kastrup, L., Blom, H., Eggeling, C. & Hell, S. W. Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys. Rev. Lett. 94, 178104 (2005).

    ADS  Article  Google Scholar 

  26. 26

    Leutenegger, M., Ringemann, C., Lasser, T., Hell, S. W. & Eggeling, C. Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF–STED–FCS). Opt. Express 20, 5243–5263 (2012).

    ADS  Article  Google Scholar 

  27. 27

    Takamura, K., Fischer, H. & Morrow, N. R. Physical properties of aqueous glycerol solutions. J. Petrol. Sci. Eng. 98–99, 50–60 (2012).

    Article  Google Scholar 

  28. 28

    Dertinger, T. et al. Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. ChemPhysChem 8, 433–443 (2007).

    Article  Google Scholar 

  29. 29

    Verkman, A. S. Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem. Sci. 27, 27–33 (2002).

    Article  Google Scholar 

  30. 30

    Hedde, P. N. et al. Stimulated emission depletion-based raster image correlation spectroscopy reveals biomolecular dynamics in live cells. Nat. Commun. 4, 2093 (2013).

    ADS  Article  Google Scholar 

  31. 31

    Dörlich, R. M. et al. Dual-color dual-focus line-scanning FCS for quantitative analysis of receptor–ligand interactions in living specimens. Sci. Rep. 5, 10149 (2015).

    ADS  Article  Google Scholar 

  32. 32

    van de Linde, S. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 6, 991–1009 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Kuhlmann for assistance with generating mGarnet fusion constructs. The authors acknowledge funding by the Karlsruhe Institute of Technology in the context of the Helmholtz programme Science and Technology of Nanosystems (STN). This work was also supported by the Deutsche Forschungsgemeinschaft (DFG) through grants GRK 2039 and Ni 291/12-1.

Author information

Affiliations

Authors

Contributions

G.U.N. supervised the project in both its conception and execution. P.G. and B.P. implemented the STEDD technique on our STED microscope, performed measurements and analysed data. L.Z. provided cell samples. G.U.N. and K.N. wrote the manuscript with input from all other authors.

Corresponding author

Correspondence to G. Ulrich Nienhaus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2871 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Prunsche, B., Zhou, L. et al. Background suppression in fluorescence nanoscopy with stimulated emission double depletion. Nature Photon 11, 163–169 (2017). https://doi.org/10.1038/nphoton.2016.279

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing