Abstract
Recent breakthroughs in the electrical detection and manipulation of antiferromagnets have opened a new avenue in the research of non-volatile spintronic devices1,2,3,4,5,6,7,8,9,10. Antiparallel spin sublattices in antiferromagnets, producing zero dipolar fields, lead to insensitivity to magnetic field perturbations, multi-level stability, ultrafast spin dynamics and other favourable characteristics, and may find utility in fields ranging from magnetic memories to optical signal processing. However, the absence of a net magnetic moment and ultrashort magnetization dynamics timescales make antiferromagnets notoriously difficult to study using common magnetometers or magnetic resonance techniques. Here, we demonstrate the experimental determination of the Néel vector in a thin film of antiferromagnetic CuMnAs (refs 9,10), a prominent material used in the first realization of antiferromagnetic memory chips10. We use a table-top femtosecond pump–probe magneto-optical experiment that is considerably more accessible than the traditionally employed large-scale-facility techniques such as neutron diffraction11 and X-ray magnetic dichroism measurements12,13,14,15,16.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films
Nature Communications Open Access 08 November 2022
-
Magneto-optical study of metamagnetic transitions in the antiferromagnetic phase of α-RuCl3
npj Quantum Materials Open Access 15 March 2022
-
Ultrafast reorientation of the Néel vector in antiferromagnetic Dirac semimetals
npj Computational Materials Open Access 20 October 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Shick, A. B., Khmelevskyi, S., Mryasov, O. N., Wunderlich, J. & Jungwirth, T. Spin–orbit coupling induced anisotropy effects in bimetallic antiferromagnets: a route towards antiferromagnetic spintronics. Phys. Rev. B 81, 212409 (2010).
MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics. Phil. Trans. R. Soc. A 369, 3098–3114 (2011).
Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).
Barthem, V. M. T. S., Colin, C. V., Mayaffre, H., Julien, M. H. & Givord, D. Revealing the properties of Mn2Au for antiferromagnetic spintronics. Nat. Commun. 4, 2892 (2013).
Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).
Kriegner, D. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 11623 (2016).
Gomonay, E. V. & Loktev, V. M. Spintronics of antiferromagnetic systems. Low Temp. Phys. 40, 17–35 (2014).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).
Wadley, P. et al. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nat. Commun. 4, 2322 (2013).
Wadley, P . et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).
Schreyer, A. et al. Neutron scattering on magnetic thin films: pushing the limits. J. Appl. Phys. 87, 5443–5448 (2000).
Alders, D. et al. Temperature and thickness dependence of magnetic moments in NiO epitaxial films. Phys. Rev. B 57, 11623 (1998).
Kuiper, P., Searle, B. G., Rudolf, P., Tjeng, L. H. & Chen, C. T. X-ray magnetic dichroism of antiferromagnet Fe2O3: the orientation of magnetic moments observed by Fe 2p X-ray absorption spectroscopy. Phys. Rev. Lett. 70, 1549–1552 (1993).
Mertins, H.-C. H. et al. Observation of the X-ray magneto-optical Voigt effect. Phys. Rev. Lett. 87, 047401 (2001).
Mertins, H.-C. et al. Magneto-optical polarization spectroscopy with soft X-rays. Appl. Phys. A 80, 1011–1020 (2005).
Valencia, S. et al. Quadratic X-ray magneto-optical effect upon reflection in a near-normal-incidence configuration at the M edges of 3d-transition metals. Phys. Rev. Lett. 104, 187401 (2010).
Zvezdin, A. K. & Kotov, V. A. Modern Magnetooptics and Magnetooptical Materials (Institute of Physics, 1997).
McCord, J. Progress in magnetic domain observation by advanced magneto-optical microscopy. J. Phys. D 48, 333001 (2015).
Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).
Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, T. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3 . Nature 429, 850–853 (2004).
Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).
Kimel, A. V. et al. Inertia-driven spin switching in antiferromagnets. Nat. Phys. 5, 727–731 (2009).
Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).
Ferre, J. & Gehring, G. A. Linear optical birefringence of magnetic crystals. Rep. Prog. Phys. 47, 513–611 (1984).
Tesarova, N. et al. Systematic study of magnetic linear dichroism and birefringence in (Ga,Mn)As. Phys. Rev. B 89, 085203 (2014).
Bossini, D. et al. Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons. Nat. Commun. 7, 10645 (2016).
Tesarova, N. et al. Direct measurement of the three-dimensional magnetization vector trajectory in GaMnAs by a magneto-optical pump-and-probe method. Appl. Phys. Lett. 100, 102403 (2012).
Tesarova, N. et al. Experimental observation of the optical spin–orbit torque. Nat. Photon. 7, 492–498 (2013).
Tesarova, N. et al. High precision magnetic linear dichroism measurements in (Ga,Mn)As. Rev. Sci. Instrum. 83, 123108 (2012).
Wadley, P. et al. Antiferromagnetic structure in tetragonal CuMnAs thin films. Sci. Rep. 5, 17079 (2015).
Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).
Bigot, J.-Y., Vomir, M. & Beaurepaire, E. Coherent ultrafast magnetism induced by femtosecond laser pulses. Nat. Phys. 5, 515–520 (2009).
Kunes, J. & Oppeneer, P. M. Anisotropic X-ray magnetic linear dichroism at the L2,3 edges of cubic Fe, Co, and Ni: ab initio calculations and model theory. Phys. Rev. B 67, 024431 (2003).
Kneedler, E. M. et al. Influence of substrate surface reconstruction on the growth and magnetic properties of Fe on GaAs(001). Phys. Rev. B 56, 8163–8168 (1997).
Moosbühler, R., Bensch, F., Dumm, M. & Bayreuther, G. Epitaxial Fe films on GaAs(001): does the substrate surface reconstruction affect the uniaxial magnetic anisotropy? J. Appl. Phys. 91, 8757–8759 (2002).
Hills, V. et al. Paramagnetic to antiferromagnetic transition in epitaxial tetragonal CuMnAs. J. Appl. Phys. 117, 172608 (2015).
Rozkotova, E. et al. Coherent control of magnetization precession in ferromagnetic semiconductor (Ga,Mn)As. Appl. Phys. Lett. 93, 232505 (2008).
Koopmans, B., Kampen, M., Kohlhepp, J. T. & Jonge, W. J. M Ultrafast magneto-optics in nickel: magnetism or optics? Phys. Rev. Lett. 85, 844–847 (2000).
Horodyska, P. et al. Exciton spin dynamics in spherical CdS quantum dots. Phys. Rev. B 81, 045301 (2010).
Carpene, E. et al. Dynamics of electron–magnon interaction and ultrafast demagnetization in thin iron films. Phys. Rev. B 78, 174422 (2008).
Acknowledgements
This work was supported by the Grant Agency of the Czech Republic (grant no. 14-37427G), by the EU ERC (advanced grant no. 268066), by the Ministry of Education of the Czech Republic (grant no. LM2015087), by the University of Nottingham EPSRC Impact Acceleration Account and by the Grant Agency of Charles University in Prague (grants nos. 1910214 and SVV–2015–260216). The authors acknowledge the Diamond Light Source for the provision of beamtime (proposal no. SI-9993).
Author information
Authors and Affiliations
Contributions
R.P.C., V.H. and V.N. prepared the samples. P.N., P.W., B.L.G., P.M. and T.J. planned the experiments. V.S. and F.T. performed the MO experiments. V.H. performed the electrical measurements. P.W., K.W.E., F.M. and S.S.D. performed the XMLD experiment. J.K. and J.Z. performed the XMLD calculations. P.N., V.S. and T.J. wrote the manuscript with contributions from all authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 684 kb)
Rights and permissions
About this article
Cite this article
Saidl, V., Němec, P., Wadley, P. et al. Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet. Nature Photon 11, 91–96 (2017). https://doi.org/10.1038/nphoton.2016.255
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2016.255
This article is cited by
-
Magneto-optical study of metamagnetic transitions in the antiferromagnetic phase of α-RuCl3
npj Quantum Materials (2022)
-
Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films
Nature Communications (2022)
-
Structural, magnetic, electronic and optical properties of cubic rare-earth vanadate perovskites PrVO3 and NdVO3: insights from GGA potentials
Indian Journal of Physics (2022)
-
Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals
Nature Materials (2021)
-
Large ultrafast-modulated Voigt effect in noncollinear antiferromagnet Mn3Sn
Nature Communications (2021)