Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Measurement of non-monotonic Casimir forces between silicon nanostructures

Abstract

Casimir forces are of fundamental interest because they originate from quantum fluctuations of the electromagnetic field1. Apart from controlling this force via the optical properties of materials2,3,4,5,6,7,8,9,10,11, a number of novel geometries have been proposed to generate repulsive and/or non-monotonic Casimir forces between bodies separated by vacuum gaps12,13,14. Experimental realization of these geometries, however, is hindered by the difficulties in alignment when the bodies are brought into close proximity. Here, using an on-chip platform with integrated force sensors and actuators15, we circumvent the alignment problem and measure the Casimir force between two surfaces with nanoscale protrusions. We demonstrate that the force depends non-monotonically on the displacement. At some displacements, the Casimir force leads to an effective stiffening of the nanomechanical spring. Our findings pave the way for exploiting the Casimir force in nanomechanical systems using structures of complex and non-conventional shapes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Geometry of interacting surfaces designed to generate non-monotonic Casimir forces.
Figure 2: Detection and actuation scheme.
Figure 3: Calibration by electrostatic force.
Figure 4: Measured force gradient per unit cell after compensating for residual voltage.

References

  1. Casimir, H. B. G. On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wet. 51, 793–795 (1948).

    MATH  Google Scholar 

  2. Derjaguin, B. V., Abrikosova, I. I. & Lifshitz, E. M. Direct measurement of molecular attraction between solids separated by a narrow gap. Q. Rev. Chem. Soc. 10, 295–329 (1956).

    Article  Google Scholar 

  3. Lamoreaux, S. K. Demonstration of the Casimir force in the 0.6 to 6 μm range. Phys. Rev. Lett. 78, 5–8 (1997).

    Article  ADS  Google Scholar 

  4. Decca, R. S., López, D., Fischbach, E. & Krause, D. E. Measurement of the Casimir force between dissimilar metals. Phys. Rev. Lett. 91, 050402 (2003).

    Article  ADS  Google Scholar 

  5. Chen, F., Klimchitskaya, G. L., Mostepanenko, V. M. & Mohideen, U. Control of the Casimir force by the modification of dielectric properties with light. Phys. Rev. B 76, 035338 (2007).

    Article  ADS  Google Scholar 

  6. Munday, J. N., Capasso, F. & Parsegian, V. A. Measured long-range repulsive Casimir–Lifshitz forces. Nature 457, 170–173 (2009).

    Article  ADS  Google Scholar 

  7. de Man, S., Heeck, K., Wijngaarden, R. J. & Iannuzzi, D. Halving the Casimir force with conductive oxides. Phys. Rev. Lett. 103, 040402 (2009).

    Article  ADS  Google Scholar 

  8. Torricelli, G. et al. Switching Casimir forces with phase-change materials. Phys. Rev. A 82, 010101 (2010).

    Article  ADS  Google Scholar 

  9. Sushkov, A. O., Kim, W. J., Dalvit, D. A. R. & Lamoreaux, S. K. Observation of the thermal Casimir force. Nat. Phys. 7, 230–233 (2011).

    Article  Google Scholar 

  10. Laurent, J., Sellier, H., Mosset, A., Huant, S. & Chevrier, J . Casimir force measurements in Au–Au and Au–Si cavities at low temperature. Phys. Rev. B 85, 035426 (2012).

    Article  ADS  Google Scholar 

  11. Garcia-Sanchez, D., Fong, K. Y., Bhaskaran, H., Lamoreaux, S. & Tang, H. X. Casimir force and in situ surface potential measurements on nanomembranes. Phys. Rev. Lett. 109, 027202 (2012).

    Article  ADS  Google Scholar 

  12. Rodriguez, A. W., Joannopoulos, J. D. & Johnson, S. G. Repulsive and attractive Casimir forces in a glide-symmetric geometry. Phys. Rev. A 77, 062107 (2008).

    Article  ADS  Google Scholar 

  13. Levin, M., McCauley, A. P., Rodriguez, A. W., Reid, M. T. H. & Johnson, S. G . Casimir repulsion between metallic objects in vacuum. Phys. Rev. Lett. 105, 090403 (2010).

    Article  ADS  Google Scholar 

  14. Rodriguez, A. W., Capasso, F. & Johnson, S. G. The Casimir effect in microstructured geometries. Nat. Photon. 5, 211–221 (2011).

    Article  ADS  Google Scholar 

  15. Zou, J. et al. Casimir forces on a silicon micromechanical chip. Nat. Commun. 4, 1845 (2013).

    Google Scholar 

  16. Serry, F. M., Walliser, D. & Maclay, G. J. The role of the Casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems (MEMS). J. Appl. Phys. 84, 2501–2506 (1998).

    Article  ADS  Google Scholar 

  17. Buks, E. & Roukes, M. L. Stiction, adhesion energy, and the Casimir effect in micromechanical systems. Phys. Rev. B 63, 033402 (2001).

    Article  ADS  Google Scholar 

  18. Bressi, G., Carugno, G., Onofrio, R. & Ruoso, G. Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett. 88, 041804 (2002).

    Article  ADS  Google Scholar 

  19. Chan, H. B. et al. Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays. Phys. Rev. Lett. 101, 030401 (2008).

    Article  ADS  Google Scholar 

  20. Intravaia, F. et al. Strong Casimir force reduction through metallic surface nanostructuring. Nat. Commun. 4, 2515 (2013).

    Article  ADS  Google Scholar 

  21. Chiu, H. C., Klimchitskaya, G. L., Marachevsky, V. N., Mostepanenko, V. M. & Mohideen, U. Lateral Casimir force between sinusoidally corrugated surfaces: asymmetric profiles, deviations from the proximity force approximation, and comparison with exact theory. Phys. Rev. B 81, 115417 (2010).

    Article  ADS  Google Scholar 

  22. Reid, M. T. H., Rodriguez, A. W., White, J. & Johnson, S. G. Efficient computation of Casimir interactions between arbitrary 3D objects. Phys. Rev. Lett. 103, 040401 (2009).

    Article  ADS  Google Scholar 

  23. Davids, P. S., Intravaia, F., Rosa, F. S. S. & Dalvit, D. A. R. Modal approach to Casimir forces in periodic structures. Phys. Rev. A 82, 062111 (2010).

    Article  ADS  Google Scholar 

  24. Messina, R. & Antezza, M. Scattering-matrix approach to Casimir–Lifshitz force and heat transfer out of thermal equilibrium between arbitrary bodies. Phys. Rev. A 84, 042102 (2011).

    Article  ADS  Google Scholar 

  25. Lussange, J., Guérout, R. & Lambrecht, A. Casimir energy between nanostructured gratings of arbitrary periodic profile. Phys. Rev. A 86, 062502 (2012).

    Article  ADS  Google Scholar 

  26. Krüger, M., Emig, T. & Kardar, M. Nonequilibrium electromagnetic fluctuations: heat transfer and interactions. Phys. Rev. Lett. 106, 210404 (2011).

    Article  ADS  Google Scholar 

  27. Milton, K. A. et al. Repulsive Casimir effects. Int. J. Mod. Phys. A 27, 1260014 (2012).

    Article  ADS  Google Scholar 

  28. Homer Reid, M. T. & Johnson, S. G. Efficient computation of power, force, and torque in BEM scattering calculations. Preprint at https://arxiv.org/abs/1307.2966 (2013).

  29. Eichenfield, M., Camacho, R., Chan, J., Vahala, K. J. & Painter, O. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459, 550–555 (2009).

    Article  ADS  Google Scholar 

  30. Rahi, S. J., Kardar, M. & Emig, T. Constraints on stable equilibria with fluctuation-induced (Casimir) forces. Phys. Rev. Lett. 105, 070404 (2010).

    Article  ADS  Google Scholar 

  31. Lambrecht, A., Pirozhenko, I., Duraffourg, L. & Andreucci, P. The Casimir effect for silicon and gold slabs. Europhys. Lett. 77, 44006 (2007).

    Article  ADS  Google Scholar 

  32. Chen, F., Mohideen, U., Klimchitskaya, G. L. & Mostepanenko, V. M. Experimental test for the conductivity properties from the Casimir force between metal and semiconductor. Phys. Rev. A 74, 022103 (2006).

    Article  ADS  Google Scholar 

  33. Pierret, R. F. Semiconductor Fundamentals (Addison-Wesley, 1988).

Download references

Acknowledgements

H.B.C., L.T. and M.W. are supported by HKUST 16300414 from the Research Grants Council of Hong Kong SAR. C.Y.N. and C.T.C. are supported by AoE/P-02/12 from the Research Grants Council of Hong Kong SAR. M.N. and A.W.R. are supported by the National Science Foundation (grant no. DMR-1454836).

Author information

Authors and Affiliations

Authors

Contributions

L.T. and M.W. fabricated the devices and conducted the measurements. C.Y.N., M.N., A.W.R. and C.T.C. performed the theoretical calculations. H.B.C. conceived and supervised the experiment. All authors discussed the results and contributed to the writing.

Corresponding author

Correspondence to H. B. Chan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 667 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Wang, M., Ng, C. et al. Measurement of non-monotonic Casimir forces between silicon nanostructures. Nature Photon 11, 97–101 (2017). https://doi.org/10.1038/nphoton.2016.254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing