Three-dimensional all-dielectric photonic topological insulator

Abstract

The discovery of two-dimensional topological photonic systems has transformed our views on the propagation and scattering of electromagnetic waves, and the quest for similar states in three dimensions is open. Here, we theoretically demonstrate that it is possible to design symmetry-protected three-dimensional topological states in an all-dielectric platform, with the electromagnetic duality between electric and magnetic fields being ensured by the structure design. Magneto-electrical coupling plays the role of a synthetic gauge field that determines a topological transition to an ‘insulating’ regime with a complete three-dimensional photonic bandgap. We reveal the emergence of surface states with conical Dirac dispersion and spin-locking, and we numerically confirm robust propagation of the surface states along two-dimensional domain walls with first-principles studies. The proposed system represents a table-top platform capable of emulating the relativistic dynamics of massive Dirac fermions and the surface states can be interpreted as Jackiw–Rebbi states bound to the interface separating domains with particles of opposite masses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Three-dimensional Dirac cone and topological transition in all-dielectric metacrystal.
Figure 2: Field profiles of the four bands corresponding to the overlaid 3D Dirac cones and two ways to induce bianisotropy.
Figure 3: Topological surface states supported by 2D domain wall in 3D all-dielectric metacrystal.
Figure 4: Spin-locking of the topological surface states.
Figure 5: Topological robustness of surface states propagating along a sharply curved 2D domain wall formed in the middle of the all-dielectric 3D topological insulator.

References

  1. 1

    Haldane, F . & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    ADS  Article  Google Scholar 

  2. 2

    Raghu, S . & Haldane, F. D. M. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008).

    ADS  Article  Google Scholar 

  3. 3

    Wang, Z., Chong, Y., Joannopoulos, J . & Soljačić, M. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, 013905 (2008).

    ADS  Article  Google Scholar 

  4. 4

    Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    ADS  Article  Google Scholar 

  5. 5

    Prodan, E. & Prodan, C. Topological phonon modes and their role in dynamic instability of microtubules. Phys. Rev. Lett. 103, 248101 (2009).

    ADS  Article  Google Scholar 

  6. 6

    Hafezi, M., Mittal, S., Fan, J., Migdall, A . & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    ADS  Article  Google Scholar 

  7. 7

    Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    ADS  Article  Google Scholar 

  8. 8

    Lu, L., Fu, L., Joannopoulos, J. D. & Soljačić, M. Weyl points and line nodes in gyroid photonic crystals. Nat. Photon. 7, 294–299 (2013).

    ADS  Article  Google Scholar 

  9. 9

    Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

    ADS  Article  Google Scholar 

  10. 10

    Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39–45 (2014).

    Article  Google Scholar 

  11. 11

    Süsstrunk, R . & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).

    ADS  Article  Google Scholar 

  12. 12

    Xiao, M. et al. Geometric phase and band inversion in periodic acoustic systems. Nat. Phys. 11, 240–244 (2015).

    Article  Google Scholar 

  13. 13

    Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).

    ADS  Article  Google Scholar 

  14. 14

    Khanikaev, A. B., Fleury, R., Mousavi, S. H. & Alù, A. Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. Nat. Commun. 6, 8260 (2015).

    ADS  Article  Google Scholar 

  15. 15

    Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  16. 16

    Nash, L. M. et al. Topological mechanics of gyroscopic metamaterials. Proc. Natl Acad. Sci. USA 112, 14495–14500 (2015).

    ADS  Article  Google Scholar 

  17. 17

    Peano, V., Brendel, C., Schmidt, M. & Marquardt, F. Topological phases of sound and light. Phys. Rev. X 5, 031011 (2015).

    Google Scholar 

  18. 18

    Wang, P., Lu, L. & Bertoldi, K. Topological phononic crystals with one-way elastic edge waves. Phys. Rev. Lett. 115, 104302 (2015).

    ADS  Article  Google Scholar 

  19. 19

    Mousavi, S. H., Khanikaev, A. B. & Wang, Z. Topologically protected elastic waves in phononic metamaterials. Nat. Commun. 6, 8682 (2015).

    ADS  Article  Google Scholar 

  20. 20

    Slobozhanyuk, A. P., Poddubny, A. N., Miroshnichenko, A. E., Belov, P. A. & Kivshar, Y. S. Subwavelength topological edge states in optically resonant dielectric structures. Phys. Rev. Lett. 114, 123901 (2015).

    ADS  Article  Google Scholar 

  21. 21

    Cheng, X. et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater. 15, 542–548 (2016).

    ADS  Article  Google Scholar 

  22. 22

    Slobozhanyuk, A. P. et al. Experimental demonstration of topological effects in bianisotropic metamaterials. Sci. Rep. 6, 22270 (2016).

    ADS  Article  Google Scholar 

  23. 23

    Lai, K., Ma, T., Bo, X., Anlage, S. & Shvets, G. Experimental realization of a reflections-free compact delay line based on a photonic topological insulator. Sci. Rep. 6, 28453 (2016).

    ADS  Article  Google Scholar 

  24. 24

    Huber, S. D. Topological mechanic. Nat. Phys. 12, 621–623 (2016).

    Article  Google Scholar 

  25. 25

    Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological states in photonic systems. Nat. Phys. 12, 626–629 (2016).

    Article  Google Scholar 

  26. 26

    Lu, L., Joannopoulos, J. D. & Soljaćić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    ADS  Article  Google Scholar 

  27. 27

    Poo, Y., Wu, R., Lin, Z., Yang, Y. & Chan, C. T. Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys. Rev. Lett. 106, 093903 (2011).

    ADS  Article  Google Scholar 

  28. 28

    Lu, L. et al. Symmetry-protected topological photonic crystal in three dimensions. Nat. Phys. 12, 337–340 (2016).

    Article  Google Scholar 

  29. 29

    Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010).

    ADS  Article  Google Scholar 

  30. 30

    Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulators in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

    Article  Google Scholar 

  31. 31

    Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

    ADS  Article  Google Scholar 

  32. 32

    Fleury, R., Khanikaev, A. & Alu, A. Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016).

    ADS  Article  Google Scholar 

  33. 33

    Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    ADS  Article  Google Scholar 

  34. 34

    Umucalılar, R. O. & Carusotto, I. Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A 84, 043804 (2011).

    ADS  Article  Google Scholar 

  35. 35

    Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

    Article  Google Scholar 

  36. 36

    Chen, W.-J. et al. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nat. Commum. 5, 5782 (2014).

    ADS  Article  Google Scholar 

  37. 37

    Mittal, S. et al. Topologically robust transport of photons in a synthetic gauge field. Phys. Rev. Lett. 113, 087403 (2014).

    ADS  Article  Google Scholar 

  38. 38

    Ma, T., Khanikaev, A. B., Mousavi, S. H. & Shvets, G. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett. 114, 127401 (2015).

    ADS  Article  Google Scholar 

  39. 39

    Wu, L.-H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

    ADS  Article  Google Scholar 

  40. 40

    Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    ADS  Article  Google Scholar 

  41. 41

    Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotech. 11, 23–36 (2016).

    ADS  Article  Google Scholar 

  42. 42

    Ringel, Z., Kraus, Y. E. & Stern, A. Strong side of weak topological insulators. Phys. Rev. B 86, 045102 (2012).

    ADS  Article  Google Scholar 

  43. 43

    Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  44. 44

    Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. W. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008).

    ADS  Article  Google Scholar 

  45. 45

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Article  Google Scholar 

  46. 46

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    ADS  Article  Google Scholar 

  47. 47

    Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    ADS  Article  Google Scholar 

  48. 48

    Jackiw, R. & Rebbi, C. Solitons with fermion number 1/2. Phys. Rev. D 13, 3398–3409 (1976).

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to L. Lu and A. Poddubny for many enlightening comments, useful discussions and suggestions. This work was supported by the National Science Foundation (CMMI-1537294 and EFRI-1641069). Research was partly carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under contract no. DE-SC0012704. This work was partially supported by the Australian Research Council. A.S. and A.B.K. acknowledge that the large scale numerical simulations were supported by the Russian Science Foundation (grant no.16-19-10538). A.S. acknowledges support from the IEEE MTT-S and Photonics Graduate Fellowships.

Author information

Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to Alexander B. Khanikaev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1529 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Slobozhanyuk, A., Mousavi, S., Ni, X. et al. Three-dimensional all-dielectric photonic topological insulator. Nature Photon 11, 130–136 (2017). https://doi.org/10.1038/nphoton.2016.253

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing