Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scattering compensation by focus scanning holographic aberration probing (F-SHARP)

Abstract

A long-standing goal in biomedical imaging, the control of light inside turbid media, requires knowledge of how the phase and amplitude of an illuminating wavefront are transformed as the electric field propagates inside a scattering sample onto a target plane. So far, it has proved challenging to non-invasively characterize the scattered optical wavefront inside a disordered medium. Here, we present a non-invasive scattering compensation method, termed F-SHARP, which allows us to measure the scattered electric-field point spread function (E-field PSF) in three dimensions. Knowledge of the phase and amplitude of the E-field PSF makes it possible to optically cancel sample turbulence. We demonstrate the imaging capabilities of this technique on a variety of samples and notably through vertebrate brains and across thinned skull in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of F-SHARP microscopy.
Figure 2: F-SHARP microscopy of fluorescent beads through muscle tissue.
Figure 3: Characterization of E-field PSF estimation.
Figure 4: In vivo F-SHARP imaging of a transgenic zebrafish larval brain.
Figure 5: Aberration and scattering compensation inside living mouse brain.
Figure 6: Imaging through thinned mouse skull in vivo.

Similar content being viewed by others

References

  1. Denk, W., Strickler, J. & Webb, W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  ADS  Google Scholar 

  2. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  Google Scholar 

  3. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).

    Article  Google Scholar 

  4. Booth, M. J. Adaptive optical microscopy: the ongoing quest for a perfect image. Light: Sci. Appl. 3, e165 (2014).

    Article  ADS  Google Scholar 

  5. Tao, X. et al. Adaptive optics confocal microscopy using direct wavefront sensing. Opt. Lett. 36, 1062–1064 (2011).

    Article  ADS  Google Scholar 

  6. Ji, N., Milkie, D. E. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods 7, 141–147 (2009).

    Article  Google Scholar 

  7. Wang, C. et al. Multiplexed aberration measurement for deep tissue imaging in vivo. Nat. Methods 11, 1037–1040 (2014).

    Article  Google Scholar 

  8. Olivier, N., Débarre, D. & Beaurepaire, E. Dynamic aberration correction for multiharmonic microscopy. Opt. Lett. 34, 3145–3147 (2009).

    Article  ADS  Google Scholar 

  9. Wang, K. et al. Rapid adaptive optical recovery of optimal resolution over large volumes. Nat. Methods 11, 625–628 (2014).

    Article  Google Scholar 

  10. Booth, M. J., Neil, M. A. A., Juškaitis, R. & Wilson, T. Adaptive aberration correction in a confocal microscope. Proc. Natl Acad. Sci. USA 99, 5788–5792 (2002).

    Article  ADS  Google Scholar 

  11. Débarre, D. et al. Image-based adaptive optics for two-photon microscopy. Opt. Lett. 34, 2495–2497 (2009).

    Article  ADS  Google Scholar 

  12. Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photon. 2, 110–115 (2008).

    Article  ADS  Google Scholar 

  13. Hsieh, C. L., Pu, Y., Grange, R. & Psaltis, D. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt. Express 18, 12283–12290 (2010).

    Article  ADS  Google Scholar 

  14. Cui, M. & Yang, C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt. Express 18, 3444–3455 (2010).

    Article  ADS  Google Scholar 

  15. Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    Article  ADS  Google Scholar 

  16. Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    Article  ADS  Google Scholar 

  17. Choi, W., Mosk, A. P., Park, Q. H., Choi, W. & Choi, W. Transmission eigenchannels in a disordered medium. Phys. Rev. B 83, 134207 (2011).

    Article  ADS  Google Scholar 

  18. Hsieh, C. L., Pu, Y., Grange, R., Laporte, G. & Psaltis, D. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle. Opt. Express 18, 20723–20731 (2010).

    Article  ADS  Google Scholar 

  19. Vellekoop, I. M. & Aegerter, C. M. Scattered light fluorescence microscopy: imaging through turbid layers. Opt. Lett. 35, 1245–1247 (2010).

    Article  ADS  Google Scholar 

  20. Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nat. Photon. 4, 320–322 (2010).

    Article  Google Scholar 

  21. Katz, O., Small, E. & Silberberg, Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nat. Photon. 6, 549–553 (2012).

    Article  ADS  Google Scholar 

  22. Guan, Y., Katz, O., Small, E., Zhou, J. & Silberberg, Y. Polarization control of multiply scattered light through random media by wavefront shaping. Opt. Lett. 37, 4663–4665 (2012).

    Article  ADS  Google Scholar 

  23. Katz, O., Small, E., Bromberg, Y. & Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nat. Photon. 5, 372–377 (2011).

    Article  ADS  Google Scholar 

  24. Aulbach, J., Gjonaj, B., Johnson, P. M., Mosk, A. P. & Lagendijk, A. Control of light transmission through opaque scattering media in space and time. Phys. Rev. Lett. 106, 103901 (2011).

    Article  ADS  Google Scholar 

  25. Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photon. 9, 563–571 (2015).

    Article  ADS  Google Scholar 

  26. Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nat. Photon. 5, 154–157 (2011).

    Article  ADS  Google Scholar 

  27. Si, K., Fiolka, R. & Cui, M. Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation. Nat. Photon. 6, 657–661 (2012).

    Article  ADS  Google Scholar 

  28. Wang, Y. M., Judkewitz, B., Dimarzio, C. A. & Yang, C. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nat. Commun. 3, 928 (2012).

    Article  ADS  Google Scholar 

  29. Judkewitz, B., Wang, Y. M., Horstmeyer, R., Mathy, A. & Yang, C. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE). Nat. Photon. 7, 300–305 (2013).

    Article  ADS  Google Scholar 

  30. Chaigne, T. et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. Nat. Photon. 8, 58–64 (2013).

    Article  ADS  Google Scholar 

  31. Lai, P., Wang, L., Tay, J. W. & Wang, L. V. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nat. Photon. 9, 126–132 (2015).

    Article  ADS  Google Scholar 

  32. Aviles-Espinosa, R. et al. Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy. Biomed. Opt. Express 2, 3135–3149 (2011).

    Article  Google Scholar 

  33. Tang, J., Germain, R. N. & Cui, M. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique. Proc. Natl Acad. Sci. USA 109, 8434–8439 (2012).

    Article  ADS  Google Scholar 

  34. Katz, O., Small, E., Guan, Y. & Silberberg, Y. Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers. Optica 1, 170–174 (2014).

    Article  ADS  Google Scholar 

  35. Kong, L. & Cui, M. In vivo fluorescence microscopy via iterative multi-photon adaptive compensation technique. Opt. Express 22, 23786–23794 (2014).

    Article  ADS  Google Scholar 

  36. Park, J. H., Sun, W. & Cui, M. High-resolution in vivo imaging of mouse brain through the intact skull. Proc. Natl Acad. Sci. USA 112, 9236–9241 (2015).

    Article  ADS  Google Scholar 

  37. Göppert-Mayer, M. Über Elementarakte mit zwei Quantensprüngen. Ann. Phys. 401, 273–294 (1931).

    Article  Google Scholar 

  38. Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

    Article  ADS  Google Scholar 

  39. Yamaguchi, I. & Zhang, T. Phase-shifting digital holography. Opt. Lett. 22, 1268–1270 (1997).

    Article  ADS  Google Scholar 

  40. Freund, I., Rosenbluh, M. & Feng, S. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett. 61, 2328–2331 (1988).

    Article  ADS  Google Scholar 

  41. Feng, S., Kane, C., Lee, P. & Stone, A. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834–837 (1988).

    Article  ADS  Google Scholar 

  42. Judkewitz, B., Horstmeyer, R., Vellekoop, I. M., Papadopoulos, I. N. & Yang, C. Translation correlations in anisotropically scattering media. Nat. Phys. 11, 684–689 (2015).

    Article  Google Scholar 

  43. Schott, S., Bertolotti, J., Léger, J. F., Bourdieu, L. & Gigan, S. Characterization of the angular memory effect of scattered light in biological tissues. Opt. Express 23, 13505–13516 (2015).

    Article  ADS  Google Scholar 

  44. Rupprecht, P., Prendergast, A., Wyart, C. & Friedrich, R. W. Remote z-scanning with a macroscopic voice coil motor for fast 3D multiphoton laser scanning microscopy. Biomed. Opt. Express 7, 1656–1616 (2016).

    Article  Google Scholar 

  45. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nat. Photon. 499, 295–300 (2013).

    Google Scholar 

  46. Tamamaki, N. et al. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J. Comp. Neurol. 467, 60–79 (2003).

    Article  Google Scholar 

  47. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  Google Scholar 

  48. Campagnola, P. J. & Loew, L. M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21, 1356–1360 (2003).

    Article  Google Scholar 

  49. Débarre, D. et al. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods 3, 47–53 (2006).

    Article  Google Scholar 

  50. Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008).

    Article  ADS  Google Scholar 

  51. Zumbusch, A., Holtom, G. R. & Xie, X. S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 82, 4142 (1999).

    Article  ADS  Google Scholar 

  52. Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photon. 7, 205–209 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Horstmeyer for discussions and help with the manuscript and S. Smith, A. Packer, C. Rowlands, E. Bobrov and M. Hoffmann for critically reviewing the manuscript. The authors thank L. Schulze for help with the zebrafish larvae mounting protocol and N. Hakiy for zebrafish husbandry. The authors also thank C. Wyart and A. Prendergast for providing the NeuroD:GCaMP6f zebrafish line. This work was supported by the DFG (EXC 257 NeuroCure), the European Research Council (ERC-2015-CoG-682422, to J.F.A.P.) and the European Union (3x3Dimaging 323945, to J.F.A.P.). I.N.P. is a recipient of the Early-PostDoc mobility fellowship of the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

B.J. and I.N.P. conceived and developed the idea. I.N.P. designed experiments with help from B.J. I.N.P. built the set-up, collected and analysed data. J.-S.J. performed mouse procedures under supervision from J.F.A.P. I.N.P. and B.J. wrote the manuscript. B.J. supervised the project.

Corresponding author

Correspondence to Benjamin Judkewitz.

Ethics declarations

Competing interests

I.N.P. and B.J. have submitted a patent application on part of the described work.

Supplementary information

Supplementary information

Supplementary information (PDF 3409 kb)

Supplementary information

Supplementary Movie 1 (AVI 2443 kb)

Supplementary information

Supplementary Movie 2 (AVI 1455 kb)

Supplementary information

Supplementary Movie 3 (AVI 380 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papadopoulos, I., Jouhanneau, JS., Poulet, J. et al. Scattering compensation by focus scanning holographic aberration probing (F-SHARP). Nature Photon 11, 116–123 (2017). https://doi.org/10.1038/nphoton.2016.252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.252

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing