Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Demonstration of a self-pulsing photonic crystal Fano laser

This article has been updated

Abstract

The semiconductor lasers in use today rely on various types of cavity, making use of Fresnel reflection at a cleaved facet1, total internal reflection between two different media2, Bragg reflection from a periodic stack of layers3,4,5,6,7,8, mode coupling in a high contrast grating9,10 or random scattering in a disordered medium11. Here, we demonstrate an ultrasmall laser with a mirror, which is based on Fano interference between a continuum of waveguide modes and the discrete resonance of a nanocavity. The rich physics of Fano resonances12 has recently been explored in a number of different photonic and plasmonic systems13,14. The Fano resonance leads to unique laser characteristics. In particular, because the Fano mirror is very narrowband compared to conventional laser mirrors, the laser is single mode and can be modulated via the mirror. We show, experimentally and theoretically, that nonlinearities in the mirror may even promote the generation of a self-sustained train of pulses at gigahertz frequencies, an effect that has previously been observed only in macroscopic lasers15,16,17,18. Such a source is of interest for a number of applications within integrated photonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fano laser structure.
Figure 2: Static characteristics of the Fano laser.
Figure 3: Dynamic characteristics of the Fano laser.
Figure 4: Self-pulsation regime.

Similar content being viewed by others

Change history

  • 12 January 2017

    In the version of this Letter originally published online, in Fig. 2a inset and Fig. 3a, the tickmarks were missing on the x and y axes, and in Fig. 4a, tickmarks were missing on the x axis. These errors have been corrected in all versions of the Letter.

References

  1. Siegman, A. E. Lasers (University Science Books, 1986).

  2. Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).

    Article  ADS  Google Scholar 

  3. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  Google Scholar 

  4. Noda, S., Yokoyama, M., Imada, M., Chutinan, A. & Mochizuki, M. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123–1125 (2001).

    Article  ADS  Google Scholar 

  5. Park, H. G. et al. Electrically driven single-cell photonic crystal laser. Science 305, 1444–1447 (2004).

    Article  ADS  Google Scholar 

  6. Matsuo, S. et al. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted. Nat. Photon. 4, 648–654 (2010).

    Article  ADS  Google Scholar 

  7. Altug, H., Englund, D. & Vučković, J. Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2, 484–488 (2006).

    Article  Google Scholar 

  8. Hamel, P. et al. Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers. Nat. Photon. 9, 311–315 (2015).

    Article  ADS  Google Scholar 

  9. Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nat. Photon. 1, 119–122 (2007).

    Article  ADS  Google Scholar 

  10. Yang, H. J. et al. Transfer-printed stacked nanomembrane lasers on silicon. Nat. Photon. 6, 615–620 (2012).

    Article  ADS  Google Scholar 

  11. Cao, H. et al. Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278–2281 (1999).

    Article  ADS  Google Scholar 

  12. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    Article  ADS  Google Scholar 

  13. Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010).

    Article  ADS  Google Scholar 

  14. Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).

    Article  ADS  Google Scholar 

  15. Keller, U. et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Quantum Electron. 2, 435–453 (1996).

    Article  Google Scholar 

  16. Bandelow, U., Wunsche, H.-J., Sartorius, B. & Mohrle, M. Dispersive self-Q-switching in DFB lasers: theory versus experiment. IEEE J. Quantum Electron. 3, 270–278 (1997).

    Article  Google Scholar 

  17. Strain, M. J., Zanola, M., Mezosi, G. & Sorel, M. Ultrashort Q-switched pulses from a passively mode-locked distributed Bragg reflector semiconductor laser. Opt. Lett. 37, 4732–4734 (2012).

    Article  ADS  Google Scholar 

  18. Renaudier, J. et al. 45 GHz self-pulsation with narrow linewidth in quantum dot Fabry–Perot semiconductor lasers at 1.5 µm. Electron. Lett. 41, 1007–1008 (2005).

    Article  Google Scholar 

  19. Akahane, Y., Asano, T., Song, B.-S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    Article  ADS  Google Scholar 

  20. Fan, S. H., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569–572 (2003).

    Article  ADS  Google Scholar 

  21. Mork, J., Chen, Y. & Heuck, M. Photonic crystal Fano laser: terahertz modulation and ultrashort pulse generation. Phys. Rev. Lett. 113, 163901 (2014).

    Article  ADS  Google Scholar 

  22. Tanaka, Y. et al. Dynamic control of the Q factor in a photonic crystal nanocavity. Nat. Mater. 6, 862–865 (2007).

    Article  ADS  Google Scholar 

  23. Zhang, Z. Y. & Qiu, M. Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs. Opt. Express 12, 3988–3995 (2004).

    Article  ADS  Google Scholar 

  24. Heuck, M., Kristensen, P. T., Elesin, Y. & Mork, J. Improved switching using Fano resonances in photonic crystal structures. Opt. Lett. 38, 2466–2468 (2013).

    Article  ADS  Google Scholar 

  25. Yu, Y. et al. Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry. Laser Photon. Rev. 9, 241–247 (2015).

    Article  ADS  Google Scholar 

  26. Tran, Q. V., Combrié, S., Colman, P. & De Rossi, A. Photonic crystal membrane waveguides with low insertion losses. Appl. Phys. Lett. 95, 061105 (2009).

    Article  ADS  Google Scholar 

  27. Nomura, M. et al. Room temperature continuous-wave lasing in photonic crystal nanocavity. Opt. Express 14, 6308–6315 (2006).

    Article  ADS  Google Scholar 

  28. Xue, W. Q. et al. Threshold characteristics of slow-light photonic crystal lasers. Phys. Rev. Lett. 116, 063901 (2016).

    Article  ADS  Google Scholar 

  29. Yacomotti, A. M., Haddadi, S. & Barbay, S. Self-pulsing nanocavity laser. Phys. Rev. A 87, 041804 (2013).

    Article  ADS  Google Scholar 

  30. Xue, W. Q. et al. Thermal analysis of line-defect photonic crystal lasers. Opt. Express 23, 18277–18287 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank L. Ottaviano for assistance with wafer preparation, and H. Hu, F. Da Ros, P.Y. Guan and L.K. Oxenløwe for assistance with experimental set-ups. The authors acknowledge financial support from Villum Fonden via the NATEC (NAnophotonics for Terabit Communications) Centre (grant no. 8692) and YIP QUEENs.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. designed the device. E.S. grew the quantum dot wafers. Y.Y. fabricated the samples. Y.Y. and W.X. performed the measurements. Y.Y. and J.M. performed the theoretical analysis. Y.Y. and J.M. prepared the manuscript. All authors commented on the manuscript. J.M. and K.Y. led the project.

Corresponding authors

Correspondence to Yi Yu or Jesper Mork.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Xue, W., Semenova, E. et al. Demonstration of a self-pulsing photonic crystal Fano laser. Nature Photon 11, 81–84 (2017). https://doi.org/10.1038/nphoton.2016.248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing