Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A single molecule as a high-fidelity photon gun for producing intensity-squeezed light


A two-level atom cannot emit more than one photon at a time. As early as the 1980s, this quantum feature was identified as a gateway to ‘single-photon sources’, where a regular excitation sequence would create a stream of light particles with photon number fluctuations below the shot noise1. Such an intensity-squeezed beam of light would be desirable for a range of applications, such as quantum imaging, sensing, enhanced precision measurements and information processing2,3. However, experimental realizations of these sources have been hindered by large losses caused by low photon-collection efficiencies and photophysical shortcomings. By using a planar metallodielectric antenna applied to an organic molecule, we demonstrate the most regular stream of single photons reported to date. The measured intensity fluctuations were limited by our detection efficiency and amounted to 2.2 dB squeezing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Antenna design for a 99% collection efficiency from a single molecule.
Figure 2: Characterization of single-molecule SPS.
Figure 3: A regular stream of single photons leads to intensity-squeezed light.


  1. 1

    Mandel, L. Sub-Poissonian photon statistics in resonance fluorescence. Opt. Lett. 4, 205–207 (1979).

    ADS  Article  Google Scholar 

  2. 2

    Lounis, B. & Orrit, M. Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005).

    ADS  Article  Google Scholar 

  3. 3

    Polyakov, S. V. & Migdall, A. L. Quantum radiometry. J. Mod. Opt. 56, 1045–1052 (2009).

    ADS  Article  Google Scholar 

  4. 4

    Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–694 (1977).

    ADS  Article  Google Scholar 

  5. 5

    Teich, M. C. & Saleh, B. E. A. Photon bunching and antibunching. Prog. Opt. 26, 1–104 (1988).

    ADS  Article  Google Scholar 

  6. 6

    Kwiat, P. G., Mattle, K., Weinfurter, H. & Zeilinger, A. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    ADS  Article  Google Scholar 

  7. 7

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    ADS  Article  Google Scholar 

  8. 8

    Mohtashami, A. & Koenderink, A. F. Suitability of nanodiamond nitrogen-vacancy centers for spontaneous emission control experiments. New J. Phys. 15, 043017 (2013).

    ADS  Article  Google Scholar 

  9. 9

    Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. ‘On’/‘off’ fluorescence intermittency of single semiconductor quantum dots. New J. Phys. 115, 1028–1040 (2001).

    Google Scholar 

  10. 10

    Chen, X.-W., Götzinger, S. & Sandoghdar, V. 99% efficiency in collecting photons from a single emitter. Opt. Lett. 36, 3545–3547 (2011).

    ADS  Article  Google Scholar 

  11. 11

    Chu, X.-L. et al. Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter. Optica 1, 203–208 (2014).

    ADS  Article  Google Scholar 

  12. 12

    Lee, K.-G. et al. A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nat. Photon. 5, 166–169 (2011).

    ADS  Article  Google Scholar 

  13. 13

    Pfab, R. J. et al. Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl. Chem. Phys. Lett. 387, 490–495 (2004).

    ADS  Article  Google Scholar 

  14. 14

    Treussart, F. et al. Direct measurement of the photon statistics of a triggered single photon source. Phys. Rev. Lett. 89, 093601 (2002).

    ADS  Article  Google Scholar 

  15. 15

    Buchler, B. C., Kalkbrenner, T., Hettich, C. & Sandoghdar, V. Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror. Phys. Rev. Lett. 95, 063003 (2005).

    ADS  Article  Google Scholar 

  16. 16

    Fox, M. Quantum Optics: An Introduction (Oxford Univ. Press, 2006).

  17. 17

    Lounis, B. & Moerner, W. E. Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000).

    ADS  Article  Google Scholar 

  18. 18

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    ADS  Article  Google Scholar 

  19. 19

    Lettow, R. et al. Quantum interference of tunably indistinguishable photons from remote organic molecules. Phys. Rev. Lett. 104, 123605 (2010).

    ADS  Article  Google Scholar 

  20. 20

    Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002).

    ADS  Article  Google Scholar 

  21. 21

    McKeever, J. et al. Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004).

    ADS  Article  Google Scholar 

  22. 22

    Basché, T., Moerner, W. E., Orrit, M. & Talon, H. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69, 1516–1519 (1992).

    ADS  Article  Google Scholar 

  23. 23

    Lounis, B., Jelezko, F. & Orrit, M. Single molecules driven by strong resonant fields: hyper-Raman and subharmonic resonances. Phys. Rev. Lett. 78, 3673–3676 (1997).

    ADS  Article  Google Scholar 

  24. 24

    Imamoglu, A. & Yamamoto, Y. Turnstile device for heralded single photons: coulomb blockade of electron and hole tunneling in quantum confined p-i-n heterojunctions. Phys. Rev. Lett. 72, 210–213 (1994).

    ADS  Article  Google Scholar 

  25. 25

    Kim, J., Benson, O., Kan, H. & Yamamoto, Y. A single-photon turnstile device. Phys. Rev. Lett. 397, 500–503 (1999).

    Google Scholar 

  26. 26

    Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    ADS  Article  Google Scholar 

  27. 27

    Diedrich, F. & Walther, H. Nonclassical radiation of a single stored ion. Phys. Rev. Lett. 58, 203–206 (1987).

    ADS  Article  Google Scholar 

  28. 28

    Keller, M., Lange, B., Hayasaka, K., Lange, W. & Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004).

    ADS  Article  Google Scholar 

  29. 29

    Kolesov, R. et al. Optical detection of a single rare-earth ion in a crystal. Nat. Commun. 3, 1029 (2012).

    ADS  Article  Google Scholar 

  30. 30

    Eichhammer, E., Utikal, T., Götzinger, S. & Sandoghdar, V. High-resolution spectroscopy of single Pr3+ ions on the 3H4–1D2 transition. New J. Phys. 17, 083018 (2015).

    ADS  Article  Google Scholar 

  31. 31

    Strauf, S. et al. High-frequency single-photon source with polarization control. Nat. Photon. 1, 704–708 (2007).

    ADS  Article  Google Scholar 

  32. 32

    Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    ADS  Article  Google Scholar 

  33. 33

    Liebermeister, L. et al. Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center. Appl. Phys. Lett. 104, 031101 (2014).

    ADS  Article  Google Scholar 

  34. 34

    Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photon. 4, 174–177 (2010).

    ADS  Article  Google Scholar 

  35. 35

    Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

    ADS  Article  Google Scholar 

  36. 36

    Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    ADS  Article  Google Scholar 

  37. 37

    Cheung, J. Y. et al. The quantum candela: a re-definition of the standard units for optical radiation. J. Mod. Opt. 54, 373–396 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  38. 38

    Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009).

    ADS  Article  Google Scholar 

  39. 39

    Waks, E., Santori, C. & Yamamoto, Y. Security aspects of quantum key distribution with sub-Poisson light. Phys. Rev. A 66, 042315 (2002).

    ADS  Article  Google Scholar 

  40. 40

    Labroille, G. et al. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Opt. Express 22, 518–519 (2014).

    Article  Google Scholar 

Download references


We thank X.-W. Chen for help with the antenna design and simulation. This project was supported by the European Union (European Research Council Advanced Grant SINGLEION) and the SIQUTE (single photon sources for quantum technologies) project of the European Metrology Research Program, an Alexander von Humboldt professorship and the Max Planck Society.

Author information




S.G. and V.S. conceived and supervised the project. X.-L.C. performed the experiments and analysed the data. All the authors prepared the manuscript.

Corresponding authors

Correspondence to Stephan Götzinger or Vahid Sandoghdar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chu, XL., Götzinger, S. & Sandoghdar, V. A single molecule as a high-fidelity photon gun for producing intensity-squeezed light. Nature Photon 11, 58–62 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing