Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Laser writing of coherent colour centres in diamond

Abstract

Optically active point defects in crystals have gained widespread attention as photonic systems that could be applied in quantum information technologies1,2. However, challenges remain in the placing of individual defects at desired locations, an essential element of device fabrication. Here we report the controlled generation of single negatively charged nitrogen–vacancy (NV) centres in diamond using laser writing3. Aberration correction in the writing optics allows precise positioning of the vacancies within the diamond crystal, and subsequent annealing produces single NV centres with a probability of success of up to 45 ± 15%, located within about 200 nm of the desired position in the transverse plane. Selected NV centres display stable, coherent optical transitions at cryogenic temperatures, a prerequisite for the creation of distributed quantum networks of solid-state qubits. The results illustrate the potential of laser writing as a new tool for defect engineering in quantum technologies, and extend laser processing to the single-defect domain.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Generation of NV colour centres using laser processing.
Figure 2: Statistics and positioning accuracy of NV generation using laser processing.
Figure 3: Spectral properties of single laser-generated NV centres at 4.2 K.
Figure 4: Spin resonance properties of laser-generated NV centres at 300 K.

References

  1. 1

    Weber, J. R. et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513–8518 (2010).

    ADS  Article  Google Scholar 

  2. 2

    Dzurak, A. Quantum computing: diamond and silicon converge. Nature 479, 47–48 (2011).

    ADS  Article  Google Scholar 

  3. 3

    Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photon. 2, 219–225 (2008).

    ADS  Article  Google Scholar 

  4. 4

    Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).

    ADS  Article  Google Scholar 

  5. 5

    Riedel, D. et al. Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide. Phys. Rev. Lett. 109, 226402 (2012).

    ADS  Article  Google Scholar 

  6. 6

    Muller, T. et al. Optical signatures of silicon-vacancy spins in diamond. Nat. Commun. 5, 3328 (2014).

    ADS  Article  Google Scholar 

  7. 7

    Rogers, L. J. et al. All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. Phys. Rev. Lett. 113, 263602 (2014).

    ADS  Article  Google Scholar 

  8. 8

    Christle, D. J. et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14, 160–163 (2015).

    ADS  Article  Google Scholar 

  9. 9

    Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164–168 (2015).

    ADS  Article  Google Scholar 

  10. 10

    von Bardeleben, H. J., Cantin, J. L., Rauls, E. & Gerstmann, U. Identification and magneto-optical properties of the NV center in 4H–SiC. Phys. Rev. B 92, 064104 (2015).

    ADS  Article  Google Scholar 

  11. 11

    Iwasaki, T. et al. Germanium-vacancy single color centers in diamond. Sci. Rep. 5, 12882 (2015).

    ADS  Article  Google Scholar 

  12. 12

    Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310 (2005).

    ADS  Article  Google Scholar 

  13. 13

    Benjamin, S. C., Lovett, B. W. & Smith, J. M. Prospects for measurement-based quantum computing using solid state spins. Laser Photon. Rev. 3, 556–574 (2009).

    ADS  Article  Google Scholar 

  14. 14

    Batalov, A. et al. Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi oscillations. Phys. Rev. Lett. 100, 077401 (2008).

    ADS  Article  Google Scholar 

  15. 15

    Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    ADS  Article  Google Scholar 

  16. 16

    Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    ADS  Article  Google Scholar 

  17. 17

    Englund, D. et al. Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett. 10, 3922–3926 (2010).

    ADS  Article  Google Scholar 

  18. 18

    Faraon, A., Barclay, P. E., Santori, C., Fu, K.-M. C. & Beausoleil, R. G. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nat. Photon. 5, 301–305 (2011).

    ADS  Article  Google Scholar 

  19. 19

    Riedrich-Möller, J. et al. One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nat. Nanotech. 7, 69–74 (2012).

    ADS  Article  Google Scholar 

  20. 20

    Toyli, D. M. et al. Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Lett. 10, 3168–3172 (2010).

    ADS  Article  Google Scholar 

  21. 21

    Chu, Y. et al. Coherent optical transitions in implanted nitrogen vacancy centers. Nano Lett. 14, 1982–1986 (2014).

    ADS  Article  Google Scholar 

  22. 22

    McLellan, C. A. et al. Patterned formation of highly coherent nitrogen-vacancy centers using a focused electron irradiation technique. Nano Lett. 16, 2450–2454 (2016).

    ADS  Article  Google Scholar 

  23. 23

    Simmonds, R. D., Salter, P. S., Jesacher, A. & Booth, M. J. Three dimensional laser microfabrication in diamond using a dual adaptive optics system. Opt. Express 19, 24122–24128 (2011).

    ADS  Article  Google Scholar 

  24. 24

    Lagomarsino, S. et al. Photoionization of monocrystalline CVD diamond irradiated with ultrashort intense laser pulse. Phys. Rev. B 93, 085128 (2016).

    ADS  Article  Google Scholar 

  25. 25

    Yamamoto, T. et al. Extending spin coherence times of diamond qubits by high-temperature annealing. Phys. Rev. B 88, 075206 (2013).

    ADS  Article  Google Scholar 

  26. 26

    Uzan-Saguy, C. et al. Damage threshold for ion-beam induced graphitization of diamond. Appl. Phys. Lett. 67, 1194–1196 (1995).

    ADS  Article  Google Scholar 

  27. 27

    Siyushev, P. et al. Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. Phys. Rev. Lett. 110, 167402 (2013).

    ADS  Article  Google Scholar 

  28. 28

    Acosta, V. M. et al. Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 108, 206401 (2012).

    ADS  Article  Google Scholar 

  29. 29

    Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

    ADS  Article  Google Scholar 

  30. 30

    Ohno, K. et al. Engineering shallow spins in diamond with nitrogen delta-doping. Appl. Phys. Lett. 101, 082413 (2012).

    ADS  Article  Google Scholar 

  31. 31

    Pham, L. M. et al. Magnetic field imaging with nitrogen-vacancy ensembles. New J. Phys. 13, 045021 (2011).

    ADS  Article  Google Scholar 

  32. 32

    Courvoisier, A., Booth, M. J. & Salter, P. S. Inscription of 3D waveguides in diamond using an ultrafast laser. Appl. Phys. Lett. 109, 031109 (2016).

    ADS  Article  Google Scholar 

  33. 33

    Sotillo, B. et al. Diamond photonics platform enabled by femtosecond laser writing. Sci. Rep. 6, 35566 (2016).

    ADS  Article  Google Scholar 

  34. 34

    Kononenko, T. V. et al. Femtosecond laser microstructuring in the bulk of diamond. Diam. Relat. Mater. 18, 196–199 (2009).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Y.-C.C. thanks DeBeers for financial support and S.N.I. acknowledges support from the EPSRC Centre for Doctoral Training in Diamond Science and Technology (EP/L015315/1). The work was supported by grants from the European Commission (Wavelength tunable Advanced Single Photon Sources (WASPS), grant agreement no 618078), the UK Engineering and Physical Sciences Research Council, (EP/M013243/1) and The Leverhulme Trust.

Author information

Affiliations

Authors

Contributions

Y.-C.C. carried out the PL, HBT and PLE measurements with assistance from L.W., P.R.D., and S.J. and coordinated the work. P.S.S. performed the laser writing. S.K. performed the Hahn echo experiments with supervision from J.G.R. A.C.F., C.J.S., B.L.G. and S.N.I. annealed the samples and performed birefringence and Raman imaging with supervision from G.W.M. and M.E.N. J.M.S., M.J.B. and P.S.S. conceived and oversaw the project. All coauthors contributed to writing the manuscript.

Corresponding author

Correspondence to Jason M. Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1543 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, YC., Salter, P., Knauer, S. et al. Laser writing of coherent colour centres in diamond. Nature Photon 11, 77–80 (2017). https://doi.org/10.1038/nphoton.2016.234

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing