Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrastable optical clock with two cold-atom ensembles

Abstract

Atomic clocks based on optical transitions are the most stable, and therefore precise, timekeepers available. These clocks operate by alternating intervals of atomic interrogation with the ‘dead’ time required for quantum state preparation and readout. This non-continuous interrogation of the atom system results in the Dick effect, an aliasing of frequency noise from the laser interrogating the atomic transition1,2. Despite recent advances in optical clock stability that have been achieved by improving laser coherence, the Dick effect has continually limited the performance of optical clocks. Here we implement a robust solution to overcome this limitation: a zero-dead-time optical clock that is based on the interleaved interrogation of two cold-atom ensembles3. This clock exhibits vanishingly small Dick noise, thereby achieving an unprecedented fractional frequency instability assessed to be for an averaging time τ in seconds. We also consider alternate dual-atom-ensemble schemes to extend laser coherence and reduce the standard quantum limit of clock stability, achieving a spectroscopy line quality factor of Q > 4 × 1015.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental scheme.
Figure 2: Timing sequence, sensitivity function and instability measurement for the three schemes studied here.
Figure 3: Computed Dick and QPN instability at 1 s assuming an atom number of 10,000.
Figure 4: Long interrogation Ramsey spectroscopy with the OLO pre-stabilized by one (fast) atomic system.

Similar content being viewed by others

References

  1. Dick, G. J. Local oscillator induced instabilities in trapped ion frequency standards. In Proc. Precise Time and Time Interval Meeting (ed. Sydnor, R. L.) 133–147 (US Naval Observatory, 1987).

  2. Santarelli, G. et al. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator. IEEE Trans. Ultra. Ferro. Freq. Cont. 45, 887–894 (1998).

    Article  Google Scholar 

  3. Dick, G. J., Prestage, J. D., Greenhall, C. A. & Maleki, L. Local oscillator induced degradation of medium-term stability in passive atomic frequency standards. In Proc. 22nd Precise Time and Time Interval Meeting (ed. Sydnor, R. L.) 487–508 (NASA, 1990).

  4. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article  ADS  Google Scholar 

  5. Poli, N., Oates, C. W., Gill, P. & Tino, G. M. Optical atomic clocks. Riv. Nuovo Cimento 36, 555–624 (2013).

    Google Scholar 

  6. Itano, W. M. et al. Quantum projection noise-population fluctuations in 2-level systems. Phys. Rev. A 47, 3554–3570 (1993).

    Article  ADS  Google Scholar 

  7. Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical clocks and relativity. Science 329, 1630–1633 (2010).

    Article  ADS  Google Scholar 

  8. Derevianko, A. & Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Phys. 10, 933–936 (2014).

    Article  Google Scholar 

  9. Arvanitaki, A., Huang, J. & Van Tilburg, K. Searching for dilation dark matter with atomic clocks. Phys. Rev. D 91, 015015 (2015).

    Article  ADS  Google Scholar 

  10. Jiang, Y. Y. et al. Making optical atomic clocks more stable with 10−16-level laser stabilization. Nat. Photonics 5, 158–161 (2011).

    Article  ADS  Google Scholar 

  11. Hinkley, N. et al. An atomic clock with 10−18 instability. Science 341, 1215–1218 (2013).

    Article  ADS  Google Scholar 

  12. Nicholson, T. L. et al. Systematic evaluation of an atomic clock at 2×10−18 total uncertainty. Nat. Commun. 6, 6896 (2015).

    Article  ADS  Google Scholar 

  13. Häfner, S. et al. 8×10−17 fractional laser frequency instability with a long room-temperature cavity. Opt. Lett. 40, 2112–2115 (2015).

    Article  ADS  Google Scholar 

  14. Al-Masoudi, A., Dörscher, S., Häfner, S., Sterr, U. & Lisdat, C. Noise and instability of an optical lattice clock. Phys. Rev. A 92, 063814 (2015).

    Article  ADS  Google Scholar 

  15. Nemitz, N. et al. Frequency ratio of Yb and Sr clocks with 5×10−17 uncertainty at 150 seconds averaging time. Nat. Photonics 10, 258–261 (2016).

    Article  ADS  Google Scholar 

  16. Takamoto, M., Takano, T. & Katori, H. Frequency comparison of optical lattice clocks beyond the Dick limit. Nat. Photonics 5, 288–292 (2011).

    Article  ADS  Google Scholar 

  17. Cole, G. D., Zhang, W., Martin, M. J., Ye, J. & Aspelmeyer, M. Tenfold reduction of Brownian noise in optical interferometry. Nat. Photonics 7, 644–650 (2013).

    Article  ADS  Google Scholar 

  18. Harry, G. M. et al. Titania-doped tantala/silica coatings for gravitational-wave detection. Classical Quant. Grav. 24, 405–415 (2007).

    Article  ADS  Google Scholar 

  19. Kessler, T. et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat. Photonics 6, 687–692 (2012).

    Article  ADS  Google Scholar 

  20. Poli, N. et al. A transportable strontium optical lattice clock. Appl. Phys. B 117, 1107–1116 (2014).

    Article  ADS  Google Scholar 

  21. Bondarescu, R. et al. Ground-based optical atomic clocks as a tool to monitor vertical surface motion. Geophys. J. Int. 191, 1770–1774 (2015).

    Article  ADS  Google Scholar 

  22. Lisdat, C. et al. A clock network for geodesy and fundamental science. Nat. Commun. 7, 12443 (2016).

    Article  ADS  Google Scholar 

  23. Schiller, S. et al. Einstein gravity explorer–a medium-class fundamental physics mission. Exp. Astron. 23, 573–610 (2009).

    Article  ADS  Google Scholar 

  24. Westergaard, P. G., Lodewyck, J. & Lemonde, P. Minimizing the Dick effect in an optical lattice clock. IEEE Trans. Ultra. Ferro. Freq. Cont. 57, 623–628 (2010).

    Article  Google Scholar 

  25. Biedermann, G. W. et al. Zero-dead-time operation of interleaved atomic clocks. Phys. Rev. Lett. 111, 170802 (2013).

    Article  ADS  Google Scholar 

  26. Kohlhaas, R. et al. Phase locking a clock oscillator to a coherent atomic ensemble. Phys. Rev. X 5, 021011 (2015).

    Google Scholar 

  27. Borregaard, J. & Sørenson, A. S. Efficient atomic clocks operated with several atomic ensembles. Phys. Rev. Lett. 111, 090802 (2013).

    Article  ADS  Google Scholar 

  28. Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).

    Article  ADS  Google Scholar 

  29. Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104, 073602 (2010).

    Article  ADS  Google Scholar 

  30. Oates, C. W., Bondu, F., Fox, R. W. & Hollberg, L. A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving. Eur. J. Phys. D 7, 449–460 (1999).

    Article  ADS  Google Scholar 

  31. Dicke, R. H. The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89, 472–473 (1953).

    Article  ADS  Google Scholar 

  32. Nagourney, W., Sandberg, J. & Dehmelt, H. Shelved optical electron amplifier: observation of quantum jumps. Phys. Rev. Lett. 56, 2797–2799 (1986).

    Article  ADS  Google Scholar 

  33. Sauter, Th., Neuhauser, W., Blatt, R. & Toschek, P. E. Observation of quantum jumps. Phys. Rev. Lett. 57, 1696–1698 (1986).

    Article  ADS  Google Scholar 

  34. Bergquist, J. C., Hulet, R. G., Itano, W. M. & Wineland, D. J. Observation of quantum jumps in a single atom. Phys. Rev. Lett. 57, 1699–1702 (1986).

    Article  ADS  Google Scholar 

  35. Ye, J., Kimble, H. J. & Katori, H. Quantum state engineering and precision metrology using state-insensitive light traps. Science 320, 1734–1738 (2008).

    Article  ADS  Google Scholar 

  36. Katori, H., Takamoto, M., Pal'chikov, V. G. & Ovsiannikov, V. D. Ultrastable optical clock with neutral atoms in an engineered light shift trap. Phys. Rev. Lett. 91, 173005 (2003).

    Article  ADS  Google Scholar 

  37. Meunier, M. et al. Stability enhancement by joint phase measurements in a single cold atomic fountain. Phys. Rev. A 90, 063633 (2014).

    Article  ADS  Google Scholar 

  38. Ma, L. S., Jungner, P., Ye, J. & Hall, J. L. Delivering the same optical frequency at 2 places - accurate cancellation of phase noise introduced by an optical-fiber or other time-varying path. Opt. Lett. 19, 1777–1779 (1994).

    Article  ADS  Google Scholar 

  39. Falke, S., Misera, M., Sterr, U. & Lisdat, C. Delivering pulsed and phase stable light to atoms of an optical clock. Appl. Phys. B 107, 301–311 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Defense Advanced Research Projects Agency (DARPA) Quantum Assisted Sensing and Readout (QuASAR) programme, the NASA Fundamental Physics programme and the National Institute of Standards and Technology for financial support. R.C.B. acknowledges support from the National Research Council Research Associateship programme. We also thank T. Fortier, F. Quinlan and S. Diddams for femtosecond optical frequency comb measurements.

Author information

Authors and Affiliations

Authors

Contributions

M.S., R.C.B., W.F.M., R.J.F., G.M., D.N. and A.D.L. carried out the instability measurements. M.S. and A.D.L. constructed the clock laser. W.F.M., T.H.Y and A.D.L. contributed to the optimization of the clock laser performance. J.A.S. constructed the DDS system for precise cavity drift compensation. R.C.B., N.H., T.H.Y., W.F.M., R.J.F., G.M. and A.D.L. were responsible for the operation of Yb-1 and Yb-2 systems and the phase noise cancellation. K.B. contributed to the evaluation of the instability budget. C.W.O. and A.D.L. supervised this work. All authors contributed to the final manuscript.

Corresponding author

Correspondence to A. D. Ludlow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schioppo, M., Brown, R., McGrew, W. et al. Ultrastable optical clock with two cold-atom ensembles. Nature Photon 11, 48–52 (2017). https://doi.org/10.1038/nphoton.2016.231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing