Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bandwidth manipulation of quantum light by an electro-optic time lens

Abstract

The ability to manipulate the spectral-temporal waveform of optical pulses has enabled a wide range of applications from ultrafast spectroscopy1 to high-speed communications2. Extending these concepts to quantum light has the potential to enable breakthroughs in optical quantum science and technology3,4,5. However, filtering and amplifying often employed in classical pulse shaping techniques are incompatible with non-classical light. Controlling the pulsed mode structure of quantum light requires efficient means to achieve deterministic, unitary manipulation that preserves fragile quantum coherences. Here, we demonstrate an electro-optic method for modifying the spectrum of non-classical light by employing a time lens6,7,8. In particular, we show highly efficient, wavelength-preserving, sixfold compression of single-photon spectral intensity bandwidth, enabling over a twofold increase of single-photon flux into a spectrally narrowband absorber. These results pave the way towards spectral-temporal photonic quantum information processing and facilitate interfacing of different physical platforms9,10,11 where quantum information can be stored12 or manipulated13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual scheme of electro-optic bandwidth compression.
Figure 2: Experimental set-up.
Figure 3: Spectral manipulation of single-photon wavepackets.
Figure 4: Performance of the bandwidth compressor.

Similar content being viewed by others

References

  1. Cundiff, S. T. & Mukamel, S. Optical multidimensional coherent spectroscopy. Phys. Today 66, 44–49 (July, 2013).

    Article  Google Scholar 

  2. Weiner, A. M. Ultrafast optical pulse shaping: a tutorial review. Opt. Commun. 284, 3669–3692 (2011).

    Article  ADS  Google Scholar 

  3. Kielpinski, D., Corney, J. F. & Wiseman, H. M. Quantum optical waveform conversion. Phys. Rev. Lett. 106, 130501 (2011).

    Article  ADS  Google Scholar 

  4. Roslund, J., de Araújo, R. M., Jiang, S., Fabre, C. & Treps, N. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photon. 8, 109–112 (2013).

    Article  ADS  Google Scholar 

  5. Brecht, B., Reddy, D. V., Silberhorn, C. & Raymer, M. G. Photon temporal modes: a complete framework for quantum information science. Phys. Rev. X 5, 041017 (2015).

    Google Scholar 

  6. Kolner, B. H. Space-time duality and the theory of temporal imaging. IEEE J. Quant. Electron. 30, 1951–1963 (1994).

    Article  ADS  Google Scholar 

  7. Foster, M. A. et al. Ultrafast waveform compression using a time-domain telescope. Nat. Photon. 3, 581–585 (2009).

    Article  ADS  Google Scholar 

  8. Torres-Company, V., Lancis, J. & Andrés, P. Space-time analogies in optics. Prog. Opt. 56, 1–80 (2011).

    Article  ADS  Google Scholar 

  9. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  10. Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  11. Lavoie, J., Donohue, J. M., Wright, L. G., Fedrizzi, A. & Resch, K. J. Spectral compression of single photons. Nat. Photon. 7, 363–366 (2013).

    Article  ADS  Google Scholar 

  12. Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nat. Photon. 3, 706–714 (2009).

    Article  ADS  Google Scholar 

  13. Campbell, G. T. et al. Configurable unitary transformations and linear logic gates using quantum memories. Phys. Rev. Lett. 113, 063601 (2014).

    Article  ADS  Google Scholar 

  14. Agrawal, G. P. Fiber-Optic Communication System (Wiley, 2010).

    Book  Google Scholar 

  15. Mosley, P. et al. Heralded generation of ultrafast single photons in pure quantum states. Phys. Rev. Lett. 100, 133601 (2008).

    Article  ADS  Google Scholar 

  16. Wasilewski, W., Kolenderski, P. & Frankowski, R. Spectral density matrix of a single photon measured. Phys. Rev. Lett. 99, 123601 (2007).

    Article  ADS  Google Scholar 

  17. Huang, J. & Kumar, P. Observation of quantum frequency conversion. Phys. Rev. Lett. 68, 2153–2156 (1992).

    Article  ADS  Google Scholar 

  18. McGuinness, H. J., Raymer, M. G., McKinstrie, C. J. & Radic, S. Quantum frequency translation of single-photon states in a photonic crystal fiber. Phys. Rev. Lett. 105, 093604 (2010).

    Article  ADS  Google Scholar 

  19. Zaske, S. et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012).

    Article  ADS  Google Scholar 

  20. Ates, S. et al. Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. Phys. Rev. Lett. 109, 147405 (2012).

    Article  ADS  Google Scholar 

  21. Vollmer, C. E. et al. Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm. Phys. Rev. Lett. 112, 073602 (2014).

    Article  ADS  Google Scholar 

  22. Matsuda, N. Deterministic reshaping of single-photon spectra using cross-phase modulation. Sci. Adv. 2, e1501223 (2016).

    Article  ADS  Google Scholar 

  23. Jensen, K. et al. Quantum memory for entangled continuous-variable states. Nat. Phys. 7, 13–16 (2011).

    Article  Google Scholar 

  24. Bustard, P. J., Lausten, R., England, D. G. & Sussman, B. J. Toward quantum processing in molecules: a THz-bandwidth coherent memory for light. Phys. Rev. Lett. 111, 083901 (2013).

    Article  ADS  Google Scholar 

  25. Kang, I., Dorrer, C. & Quochi, F. Implementation of electro-optic spectral shearing interferometry for ultrashort pulse characterization. Opt. Lett. 28, 2264–2266 (2003).

    Article  ADS  Google Scholar 

  26. Davis, A. O. C., Saulnier, P. M., Karpiński, M. & Smith, B. J. Pulsed single-photon spectrograph by frequency-to-time mapping using chirped fiber Bragg gratings. Preprint at http://arXiv.org/abs/1610.03040 (2016).

  27. Morizur, J.-F. et al. Programmable unitary spatial mode manipulation. J. Opt. Soc. Am. A 27, 2524–2531 (2010).

    Article  ADS  Google Scholar 

  28. Olislager, L. et al. Creating and manipulating entangled optical qubits in the frequency domain. Phys. Rev. A 89, 052323 (2014).

    Article  ADS  Google Scholar 

  29. Lukens, J. M., Odele, O. D., Leaird, D. E. & Weiner, A. M. Electro-optic modulation for high-speed characterization of entangled photon pairs. Opt. Lett. 40, 5331–5334 (2015).

    Article  ADS  Google Scholar 

  30. Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).

    Article  ADS  Google Scholar 

  31. Avenhaus, M., Eckstein, A., Mosley, P. J. & Silberhorn, C. Fiber-assisted single-photon spectrograph. Opt. Lett. 34, 2873–2875 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge insightful comments and discussion about the work with K. Banaszek, C. Becher, A. O. C. Davis, E. Figueroa, D. Gauthier, X. Ma, C. Silberhorn, V. Torres-Company, N. Treps and I. A. Walmsley. This project has received funding from the European Community (EC) Horizon 2020 research and innovation programme under grant agreement no. 665148. M.K. was partially supported by a Marie Curie Intra-European Fellowship no. 301032 within the EC 7th Framework Programme and by the National Science Centre of Poland project no. 2014/15/D/ST2/02385. M.J. was supported by the PhoQuS@UW project within the EC 7th Framework Programme (grant agreement no. 316244).

Author information

Authors and Affiliations

Authors

Contributions

M.K. and B.J.S. conceived the project. M.K. and M.J. designed and performed the experiment. M.J. analysed the data with input from M.K. L.J.W. developed the RF phase-locking system and contributed to the early stages of the experiment. M.K., M.J. and B.J.S. wrote the manuscript. M.J. prepared the figures.

Corresponding author

Correspondence to Michał Jachura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 363 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpiński, M., Jachura, M., Wright, L. et al. Bandwidth manipulation of quantum light by an electro-optic time lens. Nature Photon 11, 53–57 (2017). https://doi.org/10.1038/nphoton.2016.228

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing