Letter | Published:

Bandwidth manipulation of quantum light by an electro-optic time lens

Nature Photonics volume 11, pages 5357 (2017) | Download Citation

Abstract

The ability to manipulate the spectral-temporal waveform of optical pulses has enabled a wide range of applications from ultrafast spectroscopy1 to high-speed communications2. Extending these concepts to quantum light has the potential to enable breakthroughs in optical quantum science and technology3,4,5. However, filtering and amplifying often employed in classical pulse shaping techniques are incompatible with non-classical light. Controlling the pulsed mode structure of quantum light requires efficient means to achieve deterministic, unitary manipulation that preserves fragile quantum coherences. Here, we demonstrate an electro-optic method for modifying the spectrum of non-classical light by employing a time lens6,7,8. In particular, we show highly efficient, wavelength-preserving, sixfold compression of single-photon spectral intensity bandwidth, enabling over a twofold increase of single-photon flux into a spectrally narrowband absorber. These results pave the way towards spectral-temporal photonic quantum information processing and facilitate interfacing of different physical platforms9,10,11 where quantum information can be stored12 or manipulated13.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Optical multidimensional coherent spectroscopy. Phys. Today 66, 44–49 (July, 2013).

  2. 2.

    Ultrafast optical pulse shaping: a tutorial review. Opt. Commun. 284, 3669–3692 (2011).

  3. 3.

    , & Quantum optical waveform conversion. Phys. Rev. Lett. 106, 130501 (2011).

  4. 4.

    , , , & Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photon. 8, 109–112 (2013).

  5. 5.

    , , & Photon temporal modes: a complete framework for quantum information science. Phys. Rev. X 5, 041017 (2015).

  6. 6.

    Space-time duality and the theory of temporal imaging. IEEE J. Quant. Electron. 30, 1951–1963 (1994).

  7. 7.

    et al. Ultrafast waveform compression using a time-domain telescope. Nat. Photon. 3, 581–585 (2009).

  8. 8.

    , & Space-time analogies in optics. Prog. Opt. 56, 1–80 (2011).

  9. 9.

    The quantum internet. Nature 453, 1023–1030 (2008).

  10. 10.

    , , & Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

  11. 11.

    , , , & Spectral compression of single photons. Nat. Photon. 7, 363–366 (2013).

  12. 12.

    , & Optical quantum memory. Nat. Photon. 3, 706–714 (2009).

  13. 13.

    et al. Configurable unitary transformations and linear logic gates using quantum memories. Phys. Rev. Lett. 113, 063601 (2014).

  14. 14.

    Fiber-Optic Communication System (Wiley, 2010).

  15. 15.

    et al. Heralded generation of ultrafast single photons in pure quantum states. Phys. Rev. Lett. 100, 133601 (2008).

  16. 16.

    , & Spectral density matrix of a single photon measured. Phys. Rev. Lett. 99, 123601 (2007).

  17. 17.

    & Observation of quantum frequency conversion. Phys. Rev. Lett. 68, 2153–2156 (1992).

  18. 18.

    , , & Quantum frequency translation of single-photon states in a photonic crystal fiber. Phys. Rev. Lett. 105, 093604 (2010).

  19. 19.

    et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012).

  20. 20.

    et al. Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. Phys. Rev. Lett. 109, 147405 (2012).

  21. 21.

    et al. Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm. Phys. Rev. Lett. 112, 073602 (2014).

  22. 22.

    Deterministic reshaping of single-photon spectra using cross-phase modulation. Sci. Adv. 2, e1501223 (2016).

  23. 23.

    et al. Quantum memory for entangled continuous-variable states. Nat. Phys. 7, 13–16 (2011).

  24. 24.

    , , & Toward quantum processing in molecules: a THz-bandwidth coherent memory for light. Phys. Rev. Lett. 111, 083901 (2013).

  25. 25.

    , & Implementation of electro-optic spectral shearing interferometry for ultrashort pulse characterization. Opt. Lett. 28, 2264–2266 (2003).

  26. 26.

    , , & Pulsed single-photon spectrograph by frequency-to-time mapping using chirped fiber Bragg gratings. Preprint at (2016).

  27. 27.

    et al. Programmable unitary spatial mode manipulation. J. Opt. Soc. Am. A 27, 2524–2531 (2010).

  28. 28.

    et al. Creating and manipulating entangled optical qubits in the frequency domain. Phys. Rev. A 89, 052323 (2014).

  29. 29.

    , , & Electro-optic modulation for high-speed characterization of entangled photon pairs. Opt. Lett. 40, 5331–5334 (2015).

  30. 30.

    et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).

  31. 31.

    , , & Fiber-assisted single-photon spectrograph. Opt. Lett. 34, 2873–2875 (2009).

Download references

Acknowledgements

We acknowledge insightful comments and discussion about the work with K. Banaszek, C. Becher, A. O. C. Davis, E. Figueroa, D. Gauthier, X. Ma, C. Silberhorn, V. Torres-Company, N. Treps and I. A. Walmsley. This project has received funding from the European Community (EC) Horizon 2020 research and innovation programme under grant agreement no. 665148. M.K. was partially supported by a Marie Curie Intra-European Fellowship no. 301032 within the EC 7th Framework Programme and by the National Science Centre of Poland project no. 2014/15/D/ST2/02385. M.J. was supported by the PhoQuS@UW project within the EC 7th Framework Programme (grant agreement no. 316244).

Author information

Author notes

    • Michał Karpiński
    •  & Michał Jachura

    These authors contributed equally to this work

Affiliations

  1. Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK

    • Michał Karpiński
    • , Michał Jachura
    • , Laura J. Wright
    •  & Brian J. Smith
  2. Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland

    • Michał Karpiński
    •  & Michał Jachura
  3. Department of Physics and Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403, USA

    • Brian J. Smith

Authors

  1. Search for Michał Karpiński in:

  2. Search for Michał Jachura in:

  3. Search for Laura J. Wright in:

  4. Search for Brian J. Smith in:

Contributions

M.K. and B.J.S. conceived the project. M.K. and M.J. designed and performed the experiment. M.J. analysed the data with input from M.K. L.J.W. developed the RF phase-locking system and contributed to the early stages of the experiment. M.K., M.J. and B.J.S. wrote the manuscript. M.J. prepared the figures.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Michał Jachura.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2016.228

Further reading