Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spectral hole burning and its application in microwave photonics

Abstract

Spectral hole burning, used in inhomogeneously broadened emitters, is a well-established optical1 technique, with applications from spectroscopy to slow light2 and frequency combs3. In microwave photonics4, electron spin ensembles5,6 are candidates for use as quantum memories7 with potentially long storage times8. Here, we demonstrate long-lived collective dark states9 by spectral hole burning in the microwave regime10. The coherence time in our hybrid quantum system (nitrogen–vacancy centres strongly coupled to a superconducting microwave cavity) becomes longer than both the ensemble's free-induction decay and the bare cavity dissipation rate. The hybrid quantum system thus performs better than its individual subcomponents. This opens the way for long-lived quantum multimode memories, solid-state microwave frequency combs, spin squeezed states11, optical-to-microwave quantum transducers12 and novel metamaterials13. Beyond these, new cavity quantum electrodynamics experiments will be possible where spin–spin interactions and many-body phenomena14 are directly accessible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Visualization of engineered collective dark states.
Figure 3: Spectral hole burning, dark state spectroscopy and dark state dynamics.
Figure 4: Engineering of multiple dark states.

Similar content being viewed by others

References

  1. Moerner, W. E. Persistent Spectral Hole-Burning: Science and Applications (Springer Science & Business Media, 2012).

  2. Turukhin, A. V. et al. Observation of ultraslow and stored light pulses in a solid. Phys. Rev. Lett. 88, 023602 (2001).

    Article  ADS  Google Scholar 

  3. de Riedmatten, H., Afzelius, M., Staudt, M. U., Simon, C. & Gisin, N. A solid-state light–matter interface at the single-photon level. Nature 456, 773–777 (2008).

    Article  ADS  Google Scholar 

  4. Xiang, Z.-L., Ashhab, S., You, J. Q. & Nori, F. Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013).

    Article  ADS  Google Scholar 

  5. Kubo, Y. et al. Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett. 105, 140502 (2010).

    Article  ADS  Google Scholar 

  6. Amsüss, R. et al. Cavity QED with magnetically coupled collective spin states. Phys. Rev. Lett. 107, 060502 (2011).

    Article  ADS  Google Scholar 

  7. Nunn, J. et al. Multimode memories in atomic ensembles. Phys. Rev. Lett. 101, 260502 (2008).

    Article  ADS  Google Scholar 

  8. Plankensteiner, D., Ostermann, L., Ritsch, H. & Genes, C. Selective protected state preparation of coupled dissipative quantum emitters. Sci. Rep. 5, 16231 (2015).

    Article  ADS  Google Scholar 

  9. Zhu, X. et al. Observation of dark states in a superconductor diamond quantum hybrid system. Nat. Commun. 5, 3424 (2014).

    Article  ADS  Google Scholar 

  10. Krimer, D. O., Hartl, B. & Rotter, S. Hybrid quantum systems with collectively coupled spin states: suppression of decoherence through spectral hole burning. Phys. Rev. Lett. 115, 033601 (2015).

    Article  ADS  Google Scholar 

  11. Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994).

    Article  ADS  Google Scholar 

  12. Stannigel, K., Rabl, P., Sørensen, A. S., Zoller, P. & Lukin, M. D. Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 105, 220501 (2010).

    Article  ADS  Google Scholar 

  13. Rakhmanov, A. L., Zagoskin, A. M., Savel'ev, S. & Nori, F. Quantum metamaterials: electromagnetic waves in a Josephson qubit line. Phys. Rev. B 77, 144507 (2008).

    Article  ADS  Google Scholar 

  14. Ma, W.-L. et al. Uncovering many-body correlations in nanoscale nuclear spin baths by central spin decoherence. Nat. Commun. 5, 4822 (2014).

    Article  ADS  Google Scholar 

  15. Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nat. Photon. 3, 706–714 (2009).

    Article  ADS  Google Scholar 

  16. İmamoǧlu, A. Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. Phys. Rev. Lett. 102, 083602 (2009).

    Article  ADS  Google Scholar 

  17. Schuster, D. I. et al. High-cooperativity coupling of electron–spin ensembles to superconducting cavities. Phys. Rev. Lett. 105, 140501 (2010).

    Article  ADS  Google Scholar 

  18. Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).

    Article  ADS  Google Scholar 

  19. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  Google Scholar 

  20. Saeedi, K. et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 830–833 (2013).

    Article  ADS  Google Scholar 

  21. Wu, H. et al. Storage of multiple coherent microwave excitations in an electron spin ensemble. Phys. Rev. Lett. 105, 140503 (2010).

    Article  ADS  Google Scholar 

  22. Putz, S. et al. Protecting a spin ensemble against decoherence in the strong-coupling regime of cavity QED. Nat. Phys. 10, 720–724 (2014).

    Article  Google Scholar 

  23. Zhang, X. et al. Magnon dark modes and gradient memory. Nat. Commun. 6, 8914 (2015).

    Article  ADS  Google Scholar 

  24. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article  ADS  Google Scholar 

  25. Thompson, R. J., Rempe, G. & Kimble, H. J. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992).

    Article  ADS  Google Scholar 

  26. Kurucz, Z., Wesenberg, J. H. & Mølmer, K. Spectroscopic properties of inhomogeneously broadened spin ensembles in a cavity. Phys. Rev. A 83, 053852 (2011).

    Article  ADS  Google Scholar 

  27. Diniz, I. et al. Strongly coupling a cavity to inhomogeneous ensembles of emitters: potential for long-lived solid-state quantum memories. Phys. Rev. A 84, 063810 (2011).

    Article  ADS  Google Scholar 

  28. Fleischhauer, M., İmamoǧlu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  ADS  Google Scholar 

  29. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  30. Nöbauer, T. et al. Creation of ensembles of nitrogen-vacancy centers in diamond by neutron and electron irradiation. Preprint at http://lanl.arxiv.org/abs/1309.0453v1 (2013).

Download references

Acknowledgements

The authors thank A. Ardavan, B. Hartl, G. Kirchmair, K. Nemoto, H. Ritsch and M. Trupke for helpful discussions. The experimental effort led by J.M. was supported by the Top-/Anschubfinanzierung grant of TU Wien. S.P. and A.A. acknowledge support from the Austrian Science Fund (FWF) in the framework of the Doctoral School ‘Building Solids for Function’ Project W1243. D.O.K. and S.R. acknowledge funding by the Austrian Science Fund (FWF) through the Spezialforschungsbereich (SFB) NextLite Project No. F49-P10.

Author information

Authors and Affiliations

Authors

Contributions

S.P., A.A., J.S. and J.M. designed and set up the experiment. A.A. and R.G. carried out the measurements under the supervision of S.P. and J.M. D.O.K. and S.R. devised the theoretical framework and, together with W.J.M., provided the theoretical support for modelling the experiment. S.P. wrote the manuscript and all authors suggested improvements.

Corresponding authors

Correspondence to Stefan Putz or Johannes Majer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 508 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putz, S., Angerer, A., Krimer, D. et al. Spectral hole burning and its application in microwave photonics. Nature Photon 11, 36–39 (2017). https://doi.org/10.1038/nphoton.2016.225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing