Electrically pumped continuous-wave III–V quantum dot lasers on silicon


Reliable, efficient electrically pumped silicon-based lasers would enable full integration of photonic and electronic circuits, but have previously only been realized by wafer bonding. Here, we demonstrate continuous-wave InAs/GaAs quantum dot lasers directly grown on silicon substrates with a low threshold current density of 62.5 A cm–2, a room-temperature output power exceeding 105 mW and operation up to 120 °C. Over 3,100 h of continuous-wave operating data have been collected, giving an extrapolated mean time to failure of over 100,158 h. The realization of high-performance quantum dot lasers on silicon is due to the achievement of a low density of threading dislocations on the order of 105 cm−2 in the III–V epilayers by combining a nucleation layer and dislocation filter layers with in situ thermal annealing. These results are a major advance towards reliable and cost-effective silicon-based photonic–electronic integration.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Development and advantages of QD lasers.
Figure 2: Epitaxial growth and structural characterization of QD lasers.
Figure 3: Fabricated III–V laser directly grown on a silicon substrate.
Figure 4: Silicon laser performance characterization.


  1. 1

    Asghari, M. & Krishnamoorthy, A. V. Silicon photonics: energy-efficient communication. Nature Photon. 5, 268–270 (2011).

    ADS  Article  Google Scholar 

  2. 2

    Rickman, A. The commercialization of silicon photonics. Nature Photon. 8, 579–582 (2014).

    ADS  Article  Google Scholar 

  3. 3

    Virot, L. et al. Germanium avalanche receiver for low power interconnects. Nature Commun. 5, 4957 (2014).

    ADS  Article  Google Scholar 

  4. 4

    Reed, G. T., Mashanovich, G., Gardes, F. & Thomson, D. Silicon optical modulators. Nature Photon. 4, 518–526 (2010).

    ADS  Article  Google Scholar 

  5. 5

    Camacho-Aguilera, R. E. et al. An electrically pumped germanium laser. Opt. Express 20, 11316–11320 (2012).

    ADS  Article  Google Scholar 

  6. 6

    Tanabe, K., Watanabe, K. & Arakawa, Y. III–V/Si hybrid photonic devices by direct fusion bonding. Sci. Rep. 2, 349 (2012).

    ADS  Article  Google Scholar 

  7. 7

    Mi, Z., Yang, J., Bhattacharya, P. & Huffaker, D. Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon. Electron. Lett. 42, 121–123 (2006).

    Article  Google Scholar 

  8. 8

    Wang, T., Liu, H., Lee, A., Pozzi, F. & Seeds, A. 1.3-µm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt. Express 19, 11381–11386 (2011).

    ADS  Article  Google Scholar 

  9. 9

    Lee, A., Jiang, Q., Tang, M., Seeds, A. & Liu, H. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt. Express. 20, 22181–22187 (2012).

    ADS  Article  Google Scholar 

  10. 10

    Liu, A. et al. High performance continuous wave 1.3 µm quantum dot lasers on silicon. Appl. Phys. Lett. 104, 041104 (2014).

    ADS  Article  Google Scholar 

  11. 11

    Wang, Z. et al. Room-temperature, InP distributed feedback laser array directly grown on silicon. Nature Photon. 9, 837–842 (2015).

    ADS  Article  Google Scholar 

  12. 12

    Zhou, Z. et al. On-chip light sources for silicon photonics. Light Sci. Appl. 4, e358 (2015).

    Article  Google Scholar 

  13. 13

    Deppe, D., Shavritranuruk, K., Ozgur, G., Chen, H. & Freisem, S. Quantum dot laser diode with low threshold and low internal loss. Electron. Lett. 45, 54–56 (2009).

    Article  Google Scholar 

  14. 14

    Arakawa, Y. et al. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 (1982).

    ADS  Article  Google Scholar 

  15. 15

    Crowley, M. T., Naderi, N. A., Su, H., Grillot, F. & Lester, L. F. GaAs-based quantum dot lasers. Semiconductors Semimetals 86, 371–417 (2012).

    Google Scholar 

  16. 16

    Bimberg, D. et al. Quantum Dot Heterostructures (Wiley, 1999).

    Google Scholar 

  17. 17

    Liu, G. T. et al. Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well. Electron. Lett. 35, 1163–1165 (1999).

    Article  Google Scholar 

  18. 18

    Sugawara, M. & Usami, M. Quantum dot devices: handling the heat. Nature Photon. 3, 30–31 (2009).

    ADS  Article  Google Scholar 

  19. 19

    Lee, A. D. et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J. Sel. Top. Quantum Electron. 19, 1901107 (2013).

    ADS  Article  Google Scholar 

  20. 20

    Mi, Z. et al. High-performance quantum dot lasers and integrated optoelectronics on Si. Proc. IEEE 97, 1239–1248 (2009).

    Article  Google Scholar 

  21. 21

    Chichibu, S. F. et al. Origin of defect-insensitive emission probability in In-containing (Al, In, Ga) N alloy semiconductors. Nature Mater. 5, 810–816 (2006).

    ADS  Article  Google Scholar 

  22. 22

    Beanland, R. et al. Structural analysis of life tested 1.3 µm quantum dot lasers. J. Appl. Phys. 103, 014913 (2008).

    ADS  Article  Google Scholar 

  23. 23

    Liu, A. et al. Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon. IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).

    Google Scholar 

  24. 24

    Tang, M. et al. 1.3-µm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers. Opt. Express 22, 11528–11535 (2014).

    ADS  Article  Google Scholar 

  25. 25

    Chen, S. et al. 1.3 µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C. Electron. Lett. 50, 1467–1468 (2014).

    Article  Google Scholar 

  26. 26

    Liu, H. et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nature Photon. 5, 416–419 (2011).

    ADS  Article  Google Scholar 

  27. 27

    Tischler, M. A. et al. Defect reduction in GaAs epitaxial layer using a GaAsP–InGaAs strained-layer superlattice. Appl. Phys. Lett. 46, 294–296 (1985).

    ADS  Article  Google Scholar 

  28. 28

    Fischer, R. et al. Dislocation reduction in epitaxial GaAs on Si(100). Appl. Phys. Lett. 48, 1223–1225 (1986).

    ADS  Article  Google Scholar 

  29. 29

    Akiyama, M. et al. Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD. Jpn J. Appl. Phys. 23, L843 (1984).

    Article  Google Scholar 

  30. 30

    Sellers, I. et al. 1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density. Electron. Lett. 40, 1412–1413 (2004).

    Article  Google Scholar 

Download references


The authors acknowledge financial support from the UK Engineering and Physical Sciences Research Council (grants nos. EP/J012904/1 and EP/J012815/1). H.L. thanks The Royal Society for funding his University Research Fellowship.

Author information




H.L. proposed and guided the overall project with contributions from A.J.S. and P.M.S. S.C., J.W., A.J.S., P.M.S. and H.L. developed the laser structure. J.W., M.T. and H.L. performed material growth. S.C. and Q.J. carried out the device fabrication and device characterization. S.S., S.N.E. and P.M.S. performed laser near-field measurements and analysis. A.S. and S.S. contributed to the development of device processing. W.L. and I.R. performed TEM characterization and analysis. M.T. and J.W. carried out AFM characterization. S.C., J.W., A.J.S. and H.L. composed the manuscript with input from all co-authors.

Corresponding authors

Correspondence to Siming Chen or Huiyun Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1000 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Li, W., Wu, J. et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nature Photon 10, 307–311 (2016). https://doi.org/10.1038/nphoton.2016.21

Download citation

Further reading