Lasing and anti-lasing in a single cavity


Lasing, light amplification by stimulated emission of radiation, is a key attribute for many important applications in optical communications, medicine and defence. Conversely, anti-lasing represents the time-reversed counterpart of laser emission, where incoming radiation is coherently absorbed. Here, we experimentally realize lasing and anti-lasing at the same frequency in a single cavity using parity–time symmetry. Because of the time-reversal property, the demonstrated lasing and anti-lasing resonances share common resonant features such as identical frequency dependence, coherent in-phase response and fine spectral resolution. Lasing and anti-lasing in a single device offers a new route for light modulation with high contrast approaching the ultimate limit.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: CPA–laser for lasing and anti-lasing in a single cavity.
Figure 2: Experimental characterization scheme for the CPA–laser.
Figure 3: Lasing and anti-lasing measurement.
Figure 4: Phase response of outgoing waves by coherent light control.


  1. 1

    Xiao, S. et al. Loss-free and active optical negative-index metamaterials. Nature 466, 735–738 (2010).

    ADS  Article  Google Scholar 

  2. 2

    Nezhad, M. P. et al. Room-temperature subwavelength metallo-dielectric lasers. Nat. Photon. 4, 395–399 (2010).

    ADS  Article  Google Scholar 

  3. 3

    Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).

    ADS  Article  Google Scholar 

  4. 4

    Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011).

    ADS  Article  Google Scholar 

  5. 5

    Noh, H., Chong, Y., Stone, A. D. & Cao, H. Perfect coupling of light to surface plasmons by coherent absorption. Phys. Rev. Lett. 108, 186805 (2012).

    ADS  Article  Google Scholar 

  6. 6

    Pu, M. et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012).

    ADS  Article  Google Scholar 

  7. 7

    Fan, Y., Zhang, F., Zhao, Q., Wei, Z. & Li, H. Tunable terahertz coherent perfect absorption in a monolayer graphene. Opt. Lett. 39, 6269–6272 (2014).

    ADS  Article  Google Scholar 

  8. 8

    Bruck, R. & Muskens, O. L. Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches. Opt. Express 21, 27652–27661 (2013).

    ADS  Article  Google Scholar 

  9. 9

    Longhi, S. -symmetric laser absorber. Phys. Rev. A 82, 031801(R) (2010).

    ADS  Article  Google Scholar 

  10. 10

    Longhi, S. & Feng, L. -symmetric microring laser-absorber. Opt. Lett. 39, 5026–5029 (2014).

    ADS  Article  Google Scholar 

  11. 11

    Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photon. 4, 518–526 (2010).

    ADS  Article  Google Scholar 

  12. 12

    Zhang, J., MacDonald, K. F. & Zheludev, N. I. Controlling light-with-light without nonlinearity. Light Sci. Appl. 1, e18 (2012).

    ADS  Article  Google Scholar 

  13. 13

    Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    ADS  Article  Google Scholar 

  14. 14

    Hochberg, M. et al. Terahertz all-optical modulation in a silicon-polymer hybrid system. Nat. Mater. 5, 703–709 (2006).

    ADS  Article  Google Scholar 

  15. 15

    Schackert, F., Roy, A., Hatridge, M., Devoret, M. H. & Stone, A. D. Three-wave mixing with three incoming waves: signal-idler coherent attenuation and gain enhancement in a parametric amplifier. Phys. Rev. Lett. 111, 073903 (2013).

    ADS  Article  Google Scholar 

  16. 16

    Bender, C. M. & Böttcher, S. Real spectra in non-Hermitian Hamiltonians having symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    ADS  MathSciNet  Article  Google Scholar 

  17. 17

    Bender, C. M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18

    Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in -symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).

    ADS  Article  Google Scholar 

  19. 19

    Klaiman, S., Guenther, U. & Moiseyev, N. Visualization of branch points in symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  20. 20

    Longhi, S. Bloch oscillations in complex crystals with symmetry. Phys. Rev. Lett. 103, 123601 (2009).

    ADS  Article  Google Scholar 

  21. 21

    Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Article  Google Scholar 

  22. 22

    Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488, 167–171 (2012).

    ADS  Article  Google Scholar 

  23. 23

    Baum, B., Alaeian, H. & Dionne, J. A parity-time symmetric coherent plasmonic absorber-amplifier. J. Appl. Phys. 117, 063106 (2015).

    ADS  Article  Google Scholar 

  24. 24

    Lin, Z. et al. Unidirectional invisibility induced by -symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011).

    ADS  Article  Google Scholar 

  25. 25

    Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity–time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).

    ADS  Article  Google Scholar 

  26. 26

    Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).

    Article  Google Scholar 

  27. 27

    Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).

    ADS  Article  Google Scholar 

  28. 28

    Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time-symmetric microring lasers. Science 346, 975–978 (2014).

    ADS  Article  Google Scholar 

  29. 29

    Brandstetter et al. Reversing the pump dependence of a laser at an exceptional point. Nat. Commun. 5, 4034 (2014).

    ADS  Article  Google Scholar 

  30. 30

    Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014).

    ADS  Article  Google Scholar 

  31. 31

    Schomerus, P. Quantum noise and self-sustained radiation of -symmetric systems. Phys. Rev. Lett. 104, 233061 (2010).

    Article  Google Scholar 

  32. 32

    Chong, Y. D., Ge, L. & Stone, A. D. -symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011).

    ADS  Article  Google Scholar 

  33. 33

    Ghafouri-Shiraz, H. Distributed Feedback Laser Diodes and Optical Tunable Filters (Wiley, 2003).

    Google Scholar 

  34. 34

    Türeci, H. E., Stone, A. D., Ge, L., Rotter, S. & Tandy, R. J. Ab initio self-consistent laser theory and random lasers. Nonlinearity 22, C1–C18 (2009).

    ADS  MathSciNet  Article  Google Scholar 

Download references


This work was primarily funded by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy within the Metamaterials Program (KC12XZ). L.F. acknowledges the US Army Research Office (W911NF-15-1-0152) that supports the simulation. We thank the Molecular Foundry, Lawrence Berkeley National Laboratory for the technical support in nanofabrication, and D. Olynick for discussions.

Author information




Z.J.W., L.F. and X.Z. designed the experiment. Y.-L.X., Z.J.W. and L.F. performed the theoretical calculations and numerical simulations. Z.J.W. fabricated the samples. J.K., Y.-L.X., Z.J.W. and K.O.B. built the optical set-up, Z.J.W., Y.-L.X. and J.K. carried out the measurements and data analysis. All authors contributed to discussions and writing of the manuscript. X.Z., L.F. and Y.W. guided the research.

Corresponding authors

Correspondence to Liang Feng or Xiang Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1735 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wong, Z., Xu, Y., Kim, J. et al. Lasing and anti-lasing in a single cavity. Nature Photon 10, 796–801 (2016).

Download citation

Further reading