Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photonic microwave signals with zeptosecond-level absolute timing noise


Photonic synthesis of radiofrequency (RF) waveforms revived the quest for unrivalled microwave purity because of its ability to convey the benefits of optics to the microwave world1,2,3,4,5,6,7,8,9,10,11. In this work, we perform a high-fidelity transfer of frequency stability between an optical reference and a microwave signal via a low-noise fibre-based frequency comb and cutting-edge photodetection techniques. We demonstrate the generation of the purest microwave signal with a fractional frequency stability below 6.5 × 10−16 at 1 s and a timing noise floor below 41 zs Hz−1/2 (phase noise below −173 dBc Hz−1 for a 12 GHz carrier). This outperforms existing sources and promises a new era for state-of-the-art microwave generation. The characterization is achieved through a heterodyne cross-correlation scheme with the lowermost detection noise. This unprecedented level of purity can impact domains such as radar systems12, telecommunications13 and time–frequency metrology2,14. The measurement methods developed here can benefit the characterization of a broad range of signals.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental set-up for low-noise microwave generation and characterization.
Figure 2: Additive phase-noise contribution of the frequency division scheme.
Figure 3: Absolute transfer of spectral purity from optics to microwave.


  1. 1

    Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).

    ADS  Article  Google Scholar 

  2. 2

    Millo, J. et al. Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock. Appl. Phys. Lett. 94, 141105 (2009).

    ADS  Article  Google Scholar 

  3. 3

    Zhang, W. et al. Sub-100 attoseconds stability optics-to-microwave synchronization. Appl. Phys. Lett. 96, 211105 (2010).

    ADS  Article  Google Scholar 

  4. 4

    Maleki, L. Sources: the optoelectronic oscillator. Nat. Photon. 5, 728–730 (2011).

    ADS  Article  Google Scholar 

  5. 5

    Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 4, 2097 (2013).

    ADS  Article  Google Scholar 

  6. 6

    Schneider, G. J., Murakowski, J. A., Schuetz, C. A., Shi, S. & Prather, D. W. Radiofrequency signal-generation system with over seven octaves of continuous tuning. Nat. Photon. 7, 118–122 (2013).

    ADS  Article  Google Scholar 

  7. 7

    Li, J., Yi, X., Lee, H., Diddams, S. A. & Vahala, K. J. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).

    ADS  Article  Google Scholar 

  8. 8

    Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    ADS  Article  Google Scholar 

  9. 9

    Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photon. 5, 425–429 (2011).

    ADS  Article  Google Scholar 

  10. 10

    Didier, A. et al. Ultra-low phase noise all-optical microwave generation setup based on commercial devices. Appl. Opt. 54, 3682–3686 (2015).

    ADS  Article  Google Scholar 

  11. 11

    Portuondo-Campa, E., Buchs, G., Kundermann, S., Balet, L. & Lecomte, S. Ultra-low phase-noise microwave generation using a diode-pumped solid-state laser based frequency comb and a polarization-maintaining pulse interleaver. Opt. Express 23, 32441–32451 (2015).

    ADS  Article  Google Scholar 

  12. 12

    Ghelfi, P. et al. A fully photonics-based coherent radar system. Nature 507, 341–345 (2014).

    ADS  Article  Google Scholar 

  13. 13

    Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nat. Photon. 7, 977–981 (2013).

    ADS  Article  Google Scholar 

  14. 14

    Santarelli, G. et al. Quantum projection noise in an atomic fountain: a high stability cesium frequency standard. Phys. Rev. Lett. 82, 4619–4622 (1999).

    ADS  Article  Google Scholar 

  15. 15

    Hänsch, T. W. Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).

    ADS  Article  Google Scholar 

  16. 16

    Hall, J. L. Nobel lecture: defining and measuring optical frequencies. Rev. Mod. Phys. 78, 1279–1295 (2006).

    ADS  Article  Google Scholar 

  17. 17

    Nicolodi, D. et al. Spectral purity transfer between optical wavelengths at the 10−18 level. Nat. Photon. 8, 219–223 (2014).

    ADS  Article  Google Scholar 

  18. 18

    Argence, B. et al. Prototype of an ultra-stable optical cavity for space applications. Opt. Express 20, 25409–25420 (2012).

    ADS  Article  Google Scholar 

  19. 19

    Haboucha, A. et al. Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation. Opt. Lett. 36, 3654–3656 (2011).

    ADS  Article  Google Scholar 

  20. 20

    Quinlan, F. et al. Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains. Nat. Photon. 7, 290–293 (2013).

    ADS  Article  Google Scholar 

  21. 21

    Zhang, W. et al. Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation. Appl. Phys. B 106, 301–308 (2012).

    ADS  Article  Google Scholar 

  22. 22

    Rubiola, E. & Giordano, V. Correlation-based phase noise measurements. Rev. Sci. Instrum. 71, 3085–3091 (2000).

    ADS  Article  Google Scholar 

  23. 23

    Baynes, R. N. et al. Attosecond timing in optical-to-electrical conversion. Optica 2, 141–146 (2015).

    ADS  Article  Google Scholar 

  24. 24

    Quinlan, F. et al. Optical amplification and pulse interleaving for low-noise photonic generation. Opt. Lett. 39, 1581–1584 (2014).

    ADS  Article  Google Scholar 

  25. 25

    Hati, A., Nelson, C. W. & Howe, D. A. Cross-spectrum measurement of thermal-noise limited oscillators. Rev. Sci. Instrum. 87, 034708 (2016).

    ADS  Article  Google Scholar 

  26. 26

    Häfner, S. et al. 8 × 10−17 fractional laser frequency instability with a long room-temperature cavity. Opt. Lett. 40, 2112–2115 (2015).

    ADS  Article  Google Scholar 

  27. 27

    Matei, D. G. et al. A second generation of low thermal noise cryogenic silicon resonator. J. Phys. Conf. Ser. 723, 012031 (2016).

    Article  Google Scholar 

  28. 28

    Cole, G. D. et al. High-performance near- and mid-infrared crystalline coatings. Optica 3, 647–656 (2016).

    ADS  Article  Google Scholar 

  29. 29

    Thorpe, M. J., Rippe, L., Fortier, T. M., Kirchner, M. S. & Rosenband, T. Frequency stabilization to 6 × 10–16 via spectral-hole burning. Nat. Photon. 5, 688–693 (2011).

    ADS  Article  Google Scholar 

  30. 30

    Beling, A., Xie, X. & Campbell, J. C. High-power, high-linearity photodiodes. Optica 3, 328–338 (2016).

    ADS  Article  Google Scholar 

  31. 31

    Zhang, W. et al. Characterizing a fiber-based frequency comb with electro-optic modulator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 432–438 (2012).

    Article  Google Scholar 

  32. 32

    Ma, L. S., Jungner, P., Ye, J. & Hall, J. L. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett. 19, 1777–1779 (1994).

    ADS  Article  Google Scholar 

  33. 33

    Sun, W. et al. Broadband noise limit in the photodetection of ultralow jitter optical pulses. Phys. Rev. Lett. 113, 203901 (2014).

    ADS  Article  Google Scholar 

  34. 34

    Nelson, C. W. & Howe, D. A. A sub-sampling digital PM/AM noise measurement system. In Proc. IEEE Frequency Control Symp. 1–4 (IEEE, 2012).

Download references


We thank J. Pinto for help with the electronics and R. Le Targat for the reference-laser distribution. This work is funded by the Defense Advanced Research Projects Agency (DARPA) as a part of the Program in Ultrafast Laser Science and Engineering (PμreComb project) under contract no. W31P4Q-14-C-0050, by the Formation, Innovation, Recherche, Services et Transfert en Temps-Fréquence (FIRST-TF) Labex, by the Eurostar Eureka program (Stable Microwave Generation and Dissemination over Optical Fiber project) and by the EU FP7 Initial Training Network FACT (Future Atomic Clock Technology).

Author information




X.X., R.B. and D.N. set up the experiment and carried out the measurements. M.G., W.H., M.L. and R.H. conceived and built the low-noise optical frequency combs. A.J. and S.D. provided the photodiodes. C.A. programmed the cross-correlator hardware. M.L. made the RF chains in the cross-correlator. P.-A.T. and G.S. fabricated the pulse rate multipliers. X.X. and R.B. obtained the final data, prepared the manuscript and gathered the contributions from all the other co-authors. Y.L.C. designed the experiment and lead the project.

Corresponding author

Correspondence to Yann Le Coq.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Bouchand, R., Nicolodi, D. et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nature Photon 11, 44–47 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing