Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ripplon laser through stimulated emission mediated by water waves


Lasers rely on stimulated electronic transition, a quantum phenomenon in the form of population inversion. In contrast, phonon masers1,2,3 depend on stimulated Raman scattering and are entirely classical. Here we extend Raman lasers1,2,3 to rely on capillary waves, which are unique to the liquid phase of matter and relate to the attraction between intimate fluid particles. We fabricate resonators that co-host capillary4 and optical modes5, control them to operate at their non-resolved sideband and observe stimulated capillary scattering and the coherent excitation of capillary resonances at kilohertz rates (which can be heard in audio files recorded by us). By exchanging energy between electromagnetic and capillary waves, we bridge the interfacial tension phenomena at the liquid phase boundary to optics. This approach may impact optofluidics by allowing optical control, interrogation and cooling6 of water waves.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Light–matter interactions.
Figure 2: Experimental set-up.
Figure 3: Experimental results.


  1. Chiao, R., Garmire, E. & Townes, C. in Proc. Inter. School Phys. Enrico Fermi Course XXXI, Varenna Italy, 19–31 (1963).

  2. Chiao, R. Y., Townes, C. H. & Stoicheff, B. P. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett. 12, 592–595 (1964).

    ADS  Article  Google Scholar 

  3. Shen, Y. R. & Bloembergen, N. Theory of stimulated Brillouin and Raman scattering. Phys. Rev. 137, A1787–A1805 (1965).

    ADS  MathSciNet  Article  Google Scholar 

  4. Rayleigh, L. Proc. R. Soc. Lond. 29, 71–97 (1879).

    Article  Google Scholar 

  5. Ashkin, A. & Dziedzic, J. Observation of resonances in the radiation pressure on dielectric spheres. Phys. Rev. Lett. 38, 1351–1354 (1977).

    ADS  Article  Google Scholar 

  6. Aspect, A., Arimondo, E., Kaiser, R. E. A., Vansteenkiste, N. & Cohen-Tannoudji, C. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett. 61, 826–829 (1988).

    ADS  Article  Google Scholar 

  7. Noginov, M. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    ADS  Article  Google Scholar 

  8. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    ADS  Article  Google Scholar 

  9. Nezhad, M. P. et al. Room-temperature subwavelength metallo-dielectric lasers. Nat. Photon. 4, 395–399 (2010).

    ADS  Article  Google Scholar 

  10. Mitsui, T. Observation of ripplon on the liquid droplet adhered to the tip of an optical fiber. Jpn. J. Appl. Phys. 43, 6425–6428 (2004).

    ADS  Article  Google Scholar 

  11. Metzger, C. H. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002–1005 (2004).

    ADS  Article  Google Scholar 

  12. Maayani, S., Martin, L. L., Kaminski, S. & Carmon, T. Cavity optocapillaries. Optica 3, 552–555 (2016).

    ADS  Article  Google Scholar 

  13. Kittel, C. Introduction to Solid State Physics (Wiley, 2005).

    MATH  Google Scholar 

  14. Vahala, K. et al. A phonon laser. Nat. Phys. 5, 682–686 (2009).

    Article  Google Scholar 

  15. Tzeng, H.-M., Wall, K. F., Long, M. & Chang, R. Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances. Opt. Lett. 9, 499–501 (1984).

    ADS  Article  Google Scholar 

  16. Hossein-Zadeh, M. & Vahala, K. J. Fiber-taper coupling to whispering-gallery modes of fluidic resonators embedded in a liquid medium. Opt. Express 14, 10800–10810 (2006).

    ADS  Article  Google Scholar 

  17. Jonáš, A., Karadag, Y., Mestre, M. & Kiraz, A. Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides. J. Opt. Soc. Am. B 29, 3240–3247 (2012).

    ADS  Article  Google Scholar 

  18. Kaminski, S., Martin, L. L. & Carmon, T. Tweezers controlled resonator. Opt. Express 23, 28914–28919 (2015).

    ADS  Article  Google Scholar 

  19. Dahan, R., Martin, L. L. & Carmon, T. Droplets acoustics. Optica 3, 175–178 (2016).

    ADS  Article  Google Scholar 

  20. Maayani, S., Martin, L. L. & Carmon, T. Water-walled microfluidics makes an ultimate optical finesse. Nat. Commun. 7, 10435 (2016).

    ADS  Article  Google Scholar 

  21. Oxborrow, M. Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEEE Trans. Microw. Theory 55, 1209–1218 (2007).

    ADS  Article  Google Scholar 

  22. Strani, M. & Sabetta, F. Free vibrations of a drop in partial contact with a solid support. J. Fluid Mech. 141, 233–247 (1984).

    ADS  Article  Google Scholar 

  23. Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T. J. & Vahala, K. J. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005).

    ADS  Article  Google Scholar 

  24. Gorodetsky, M. L. & Ilchenko, V. S. Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B 16, 147–154 (1999).

    ADS  Article  Google Scholar 

  25. Carmon, T., Yang, L. & Vahala, K. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    ADS  Article  Google Scholar 

  26. Milonni, P. W. & Eberly, J. H. Lasers 324–327 (Wiley, 1988).

  27. Behroozi, F., Smith, J. & Even, W. Stokes’ dream: measurement of fluid viscosity from the attenuation of capillary waves. Am. J. Phys. 78, 1165–1169 (2010).

    ADS  Article  Google Scholar 

  28. Rokhsari, H., Kippenberg, T., Carmon, T. & Vahala, K. J. Radiation-pressure-driven micro-mechanical oscillator. Opt. Express 13, 5293–5301 (2005).

    ADS  Article  Google Scholar 

  29. Carmon, T. & Vahala, K. J. Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency. Phys. Rev. Lett. 98, 123901 (2007).

    ADS  Article  Google Scholar 

  30. Knight, J., Cheung, G., Jacques, F. & Birks, T. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett. 22, 1129–1131 (1997).

    ADS  Article  Google Scholar 

  31. Little, B. E., Laine, J.-P. & Haus, H. A. Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators. J. Lightwave Technol. 17, 704–715 (1999).

    ADS  Article  Google Scholar 

Download references


This research was supported by the Israeli Centers of Research Excellenece (ICore) Circle of Light and by the Israeli Science Foundation under grant no. 2013/15.

Author information

Authors and Affiliations



S.K. and L.L.M. fabricated the devices and performed the experiments. S.K. and S.M. analysed the data. L.L.M. and T.C. supervised the research.

Corresponding author

Correspondence to Leopoldo L. Martin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 190 kb)

Supplementary information

Supplementary Movie 1 (GIF 549 kb)

Supplementary information

Supplementary Movie 2 (GIF 501 kb)

Supplementary information

Supplementary Movie 3 (WMV 599 kb)

Supplementary information

Supplementary Movie 4 (WMV 4927 kb)

Supplementary information

Supplementary Movie 5 (WMV 130 kb)

Supplementary information

Supplementary Movie 6 (WMV 982 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaminski, S., Martin, L., Maayani, S. et al. Ripplon laser through stimulated emission mediated by water waves. Nature Photon 10, 758–761 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing