Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Integrated optomechanical single-photon frequency shifter

Abstract

The ability to manipulate single photons is of critical importance for fundamental quantum optics studies and practical implementations of quantum communications. While extraordinary progresses have been made in controlling spatial, temporal, spin and orbit angular momentum degrees of freedom1,2,3,4,5,6, frequency-domain control of single photons so far relies on nonlinear optical effects, which have faced obstacles such as noise photons, narrow bandwidth and demanding optical filtering7,8,9,10,11,12,13,14,15. Here, we demonstrate the first integrated optomechanical single-photon frequency shifter with near-unity efficiency. A frequency shift up to 150 GHz at telecom wavelength is realized without measurable added noise and the preservation of quantum coherence is verified through quantum interference between twin photons of different colours. This single-photon frequency shifter will be invaluable for increasing the channel capacity of quantum communications and compensating frequency mismatch between quantum systems, paving the road towards a hybrid quantum network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of frequency conversion.
Figure 2: Frequency conversion induced by mechanical motion.
Figure 3: Single-photon frequency control.
Figure 4: Quantum interference between two photons with different colours.

Similar content being viewed by others

References

  1. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    Article  ADS  Google Scholar 

  2. Shadbolt, P. J. et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photon. 6, 45–49 (2012).

    Article  ADS  Google Scholar 

  3. Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    Article  ADS  Google Scholar 

  4. Marcikic, I. et al. Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502 (2004).

    Article  ADS  Google Scholar 

  5. Ferdous, F. et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photon. 5, 770–776 (2011).

    Article  ADS  Google Scholar 

  6. Franson, J. D. Bell inequality for position and time. Phys. Rev. Lett. 62, 2205–2208 (1989).

    Article  ADS  Google Scholar 

  7. Kumar, P. Quantum frequency conversion. Opt. Lett. 15, 1476–1478 (1990).

    Article  ADS  Google Scholar 

  8. Salem, R. et al. Signal regeneration using low-power four-wave mixing on silicon chip. Nat. Photon. 2, 35–38 (2008).

    Article  ADS  Google Scholar 

  9. McGuinness, H. J., Raymer, M. G., McKinstrie, C. J. & Radic, S. Quantum frequency translation of single-photon states in a photonic crystal fiber. Phys. Rev. Lett. 105, 093604 (2010).

    Article  ADS  Google Scholar 

  10. Rakher, M. T., Ma, L., Slattery, O., Tang, X. & Srinivasan, K. Quantum transduction of telecommunications band single photons from a quantum dot by frequency upconversion. Nat. Photon. 4, 786–791 (2010).

    Article  ADS  Google Scholar 

  11. Ikuta, R. et al. Wide-band quantum interface for visible-to-telecommunication wavelength conversion. Nat. Commun. 2, 1544 (2011).

    Article  Google Scholar 

  12. De Greve, K. et al. Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

    Article  ADS  Google Scholar 

  13. Zaske, S. et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012).

    Article  ADS  Google Scholar 

  14. Clark, A. S., Shahnia, S., Collins, M. J., Xiong, C. & Eggleton, B. J. High-efficiency frequency conversion in the single-photon regime. Opt. Lett. 38, 947–949 (2013).

    Article  ADS  Google Scholar 

  15. Matsuda, N. Deterministic reshaping of single-photon spectra using cross-phase modulation. Sci. Adv. 2, e1501223 (2016).

    Article  ADS  Google Scholar 

  16. Sinclair, N. et al. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. Phys. Rev. Lett. 113, 053603 (2014).

    Article  ADS  Google Scholar 

  17. Gao, W. B., Imamoglu, A., Bernien, H. & Hanson, R. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nat. Photon. 9, 363–373 (2015).

    Article  ADS  Google Scholar 

  18. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  19. Sallen, G. et al. Subnanosecond spectral diffusion measurement using photon correlation. Nat. Photon. 4, 696–699 (2010).

    Article  ADS  Google Scholar 

  20. Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun. 3, 1196 (2012).

    Article  ADS  Google Scholar 

  21. Liu, Y., Davanço, M., Aksyuk, V. & Srinivasan, K. Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators. Phys. Rev. Lett. 110, 223603 (2013).

    Article  ADS  Google Scholar 

  22. Kuo, P. S. et al. Reducing noise in single-photon-level frequency conversion. Opt. Lett. 38, 1310–1312 (2013).

    Article  ADS  Google Scholar 

  23. Farías, D. A. & Eckstein, J. N. Coupled-mode analysis of an electrooptic frequency shifter. IEEE J. Quantum Electron. 39, 358–363 (2003).

    Article  ADS  Google Scholar 

  24. Notomi, M. Manipulating light with strongly modulated photonic crystals. Rep. Prog. Phys. 73, 096501 (2010).

    Article  ADS  Google Scholar 

  25. Preble, S. F., Xu, Q. & Lipson, M. Changing the colour of light in a silicon resonator. Nat. Photon. 1, 293–296 (2007).

    Article  ADS  Google Scholar 

  26. Tanabe, T., Notomi, M., Taniyama, H. & Kuramochi, E. Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning. Phys. Rev. Lett. 102, 043907 (2009).

    Article  ADS  Google Scholar 

  27. Fan, L., Fong, K. Y., Poot, M. & Tang, H. X. Cascaded optical transparency in multimode-cavity optomechanical systems. Nat. Commun. 6, 5850 (2015).

    Article  ADS  Google Scholar 

  28. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2246 (1987).

    Article  ADS  Google Scholar 

  29. Bachor, H. A. & Ralph, T. C. A Guide to Experiments in Quantum Optics (Wiley-VCH, 2004).

    Book  Google Scholar 

  30. Wright, L. J., Karpinski, M., Soller, C. & Smith, B. J. Spectral shearing of quantum light pulses by electro-optic phase modulation. Preprint at http://lanl.arxiv.org/abs/1605.00640 (2016).

Download references

Acknowledgements

We acknowledge funding support from an LPS/ARO grant (W911NF-14-1-0563), Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) grant (FA9550-15-1-0029), Defense Advanced Research Projects Agency (DARPA) Optical Radiation Cooling and Heating in Integrated Devices programme (ORCHID) through a grant from Air Force Office of Scientific Research (FA9550-10-1-0297), and the Packard Foundation. Facilities used were supported by the Yale Institute for Nanoscience and Quantum Engineering (YINQE) and the National Science Foundation (NSF) Materials Research Science and Engineering Centers (MRSEC) Division of Materials Research (DMR) 1119826. The authors acknowledge L. Jiang and L. Li for discussion. The authors thank M. Power and M. Rooks for assistance in device fabrication.

Author information

Authors and Affiliations

Authors

Contributions

H.X.T., L.F. and C.-L.Z. conceived the experiment; L.F., R.C. and X.H. fabricated the device; L.F., M.P., R.C. and X.G. performed the measurements; L.F. and C.-L.Z. analysed the data. L.F. and C.-L.Z. wrote the manuscript, and all authors contributed to the manuscript. H.X.T. supervised the work.

Corresponding author

Correspondence to Hong X. Tang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Zou, CL., Poot, M. et al. Integrated optomechanical single-photon frequency shifter. Nature Photon 10, 766–770 (2016). https://doi.org/10.1038/nphoton.2016.206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing