Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields


The ultrafast coherent manipulation of electrons using waveform-controlled laser pulses1,2,3,4,5,6,7,8,9 is a key issue in the development of modern electronics10,11. Developing such an approach for a tunnel junction will provide a new platform for governing ultrafast currents on an even smaller scale, which will be indispensable for the advancement of next-generation quantum nanocircuits12,13,14,15 and plasmonic devices16,17,18. Here, we demonstrate that carrier-envelope-phase-controlled single-cycle terahertz electric fields can coherently drive electron tunnelling either from a nanotip to a sample or vice versa. Spatially confined electric fields of more than 10 V nm–1 strongly modulate the potential barrier at a nanogap in a scanning tunnelling microscope (STM) on the subpicosecond timescale and can steer a large number of electrons in an extremely nonlinear regime, which is not possible using a conventional STM. Our results are expected to pave the way for the future development of nanoscale science and technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental set-up of the THz-STM.
Figure 2: Effect of CEP on the motion of tunnelling electrons.
Figure 3: Current saturation under strong electric fields.


  1. 1

    Paulus, G. G. et al. Measurement of the phase of few-cycle laser pulses. Phys. Rev. Lett. 91, 253004 (2003).

    ADS  Article  Google Scholar 

  2. 2

    Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

    Article  Google Scholar 

  3. 3

    Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    ADS  Article  Google Scholar 

  4. 4

    Paasch-Colberg, T. et al. Solid-state light-phase detector. Nat. Photon. 8, 214–218 (2014).

    ADS  Article  Google Scholar 

  5. 5

    Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

    ADS  Article  Google Scholar 

  6. 6

    Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

    ADS  Article  Google Scholar 

  7. 7

    Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

    Article  Google Scholar 

  8. 8

    Wimmer, L. et al. Terahertz control of nanotip photoemission. Nat. Phys. 10, 432–436 (2014).

    Article  Google Scholar 

  9. 9

    Piglosiewicz, B. et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat. Photon. 8, 37–42 (2014).

    ADS  Article  Google Scholar 

  10. 10

    Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nat. Photon. 4, 261–263 (2010).

    Article  Google Scholar 

  11. 11

    Krausz, F. & Stockman, M. I. Attosecond metrology: from electron capture to future signal processing. Nat. Photon. 8, 205–213 (2014).

    ADS  Article  Google Scholar 

  12. 12

    Ward, D. R., Hüser, F., Pauly, F., Cuevas, J. C. & Natelson, D. Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotech. 5, 732–736 (2010).

    ADS  Article  Google Scholar 

  13. 13

    Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012).

    ADS  Article  Google Scholar 

  14. 14

    Yoshida, K., Shibata, K. & Hirakawa, K. Terahertz field enhancement and photon-assisted tunneling in single-molecule transistors. Phys. Rev. Lett. 115, 138302 (2015).

    ADS  Article  Google Scholar 

  15. 15

    Sharma, A., Singh, V., Bougher, T. L. & Cola, B. A. A carbon nanotube optical rectenna. Nat. Nanotech. 10, 1027–1032 (2015).

    ADS  Article  Google Scholar 

  16. 16

    Savage, K. J. et al. Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574–577 (2012).

    ADS  Article  Google Scholar 

  17. 17

    Tan, S. F. et al. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343, 1496–1499 (2014).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18

    Bahk, Y.-M. et al. Electromagnetic saturation of angstrom-sized quantum barriers at terahertz frequencies. Phys. Rev. Lett. 115, 125501 (2015).

    ADS  Article  Google Scholar 

  19. 19

    Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photon. 7, 620–625 (2013).

    ADS  Article  Google Scholar 

  20. 20

    Grafström, S. Photoassisted scanning tunneling microscopy. J. Appl. Phys. 91, 1717–1753 (2002).

    ADS  Article  Google Scholar 

  21. 21

    Hirori, H., Doi, A., Blanchard, F. & Tanaka, K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3 . Appl. Phys. Lett. 98, 091106 (2011).

    ADS  Article  Google Scholar 

  22. 22

    Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 7, 680–690 (2013).

    ADS  Article  Google Scholar 

  23. 23

    Yoshioka, K. et al. Terahertz-field-induced nonlinear electron delocalization in Au nanostructures. Nano Lett. 15, 1036–1040 (2015).

    ADS  Article  Google Scholar 

  24. 24

    Terada, Y., Yoshida, S., Takeuchi, O. & Shigekawa, H. Real-space imaging of transient carrier dynamics by nanoscale pump–probe microscopy. Nat. Photon. 4, 869–874 (2010).

    ADS  Article  Google Scholar 

  25. 25

    Yoshida, S. et al. Probing ultrafast spin dynamics with optical pump–probe scanning tunnelling microscopy. Nat. Nanotech. 9, 588–593 (2014).

    ADS  Article  Google Scholar 

  26. 26

    Feng, S. & Winful, H. G. Physical origin of the Gouy phase shift. Opt. Lett. 26, 485–487 (2001).

    ADS  Article  Google Scholar 

  27. 27

    Higuchi, T., Maisenbacher, L., Liehl, A., Dombi, P. & Hommelhoff, P. A nanoscale vacuum-tube diode triggered by few-cycle laser pulses. Appl. Phys. Lett. 106, 051109 (2015).

    ADS  Article  Google Scholar 

  28. 28

    Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963).

    ADS  Article  Google Scholar 

  29. 29

    Zhang, P. Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions. Sci. Rep. 5, 9826 (2015).

    ADS  Article  Google Scholar 

  30. 30

    Shalaby, M. & Hauri, C. P. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nat. Commun. 6, 5976 (2015).

    ADS  Article  Google Scholar 

Download references


This work was supported in part by the Grants-in-Aid for Scientific Research (numbers 15H05734, 16H03820, 16H04001 and 16H06010) from the Japan Society for the Promotion of Science and the Ministry of Education, Culture, Sports, Science and Technology, and by the Strategic Information and Communications R&D Promotion Programme (SCOPE #145003103) of Japan Ministry of Internal Affairs and Communications.

Author information




I.K., M.K., H.S. and J.T. conceived and coordinated this project. K.Y. designed and built the THz-STM set-up. K.Y. and Y.M. developed the intense THz generation system, and K.Y. and S.Y. constructed the operation program of the STM. K.Y. carried out the experiments and simulations with support from I.K., Y.M. and S.Y., and H.S., M.K. and J.T. contributed to the initial concept of the experiments. K.Y. and J.T. wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Ikufumi Katayama or Hidemi Shigekawa or Jun Takeda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1350 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoshioka, K., Katayama, I., Minami, Y. et al. Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields. Nature Photon 10, 762–765 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing