Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes

Abstract

Scalability and foundry compatibility (as apply to conventional silicon-based integrated computer processors, for example) in developing quantum technologies are major challenges facing current research. Here we introduce a quantum photonic technology that has the potential to enable the large-scale fabrication of semiconductor-based, site-controlled, scalable arrays of electrically driven sources of polarization-entangled photons that may be able to encode quantum information. The design of the sources is based on quantum dots grown in micrometre-sized pyramidal recesses along the crystallographic direction (111)B, which theoretically ensures high symmetry of the quantum dots—a requirement for bright entangled-photon emission. A selective electric injection scheme in these non-planar structures allows a high density of light-emitting diodes to be obtained, with some producing entangled photon pairs that also violate Bell's inequality. Compatibility with semiconductor fabrication technology, good reproducibility and lithographic position control make these devices attractive candidates for integrated photonic circuits for quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The internal structure of a device and the schematics of a μLED.
Figure 2: Selective injection scheme and its realization.
Figure 3: Electroluminescence of μLEDs.
Figure 4: Measurements of two-photon polarization state entanglement.

Similar content being viewed by others

References

  1. O'Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    ADS  Google Scholar 

  2. Gisin, N. & Thew, R. Quantum communication. Nat. Photon 1, 165–171 (2007).

    Article  ADS  Google Scholar 

  3. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

    Article  Google Scholar 

  4. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  ADS  Google Scholar 

  5. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  ADS  Google Scholar 

  6. Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  ADS  Google Scholar 

  7. Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

    Article  ADS  Google Scholar 

  8. Young, R. J. et al. Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29–29 (2006).

    Article  ADS  Google Scholar 

  9. Hafenbrak, R. et al. Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K. New J. Phys. 9, 315–315 (2007).

    Article  ADS  Google Scholar 

  10. Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220, (2010).

    Article  ADS  Google Scholar 

  11. Juska, G., Dimastrodonato, V., Mereni, L. O., Gocalinska, A. & Pelucchi, E. Towards quantum-dot arrays of entangled photon emitters. Nat. Photon. 7, 527–531 (2013).

    Article  ADS  Google Scholar 

  12. Trotta, R., Wildmann, J. S., Zallo, E., Schmidt, O. G. & Rastelli, A. Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices. Nano Lett. 14, 3439–3444 (2014).

    Article  ADS  Google Scholar 

  13. Kuroda, T. et al. Symmetric quantum dots as efficient sources of highly entangled photons: violation of Bell's inequality without spectral and temporal filtering. Phys. Rev. B 88, 041306(R) (2013).

    Article  ADS  Google Scholar 

  14. Versteegh, M. A. M. et al. Observation of strongly entangled photon pairs from a nanowire quantum dot. Nat. Commun. 5, 5298 (2014).

    Article  ADS  Google Scholar 

  15. Boretti, A., Rosa, L., Mackie, A. & Castelletto, S. Electrically driven quantum light sources. Adv. Opt. Mater. 3, 1012–1033 (2015).

    Article  Google Scholar 

  16. Salter, C. L. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010).

    Article  ADS  Google Scholar 

  17. Zhang, J. et al. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat. Commun. 6, 10067 (2015).

    Article  ADS  Google Scholar 

  18. Juska, G. et al. Conditions for entangled photon emission from (111)B site-controlled pyramidal quantum dots. J. Appl. Phys. 117, 134302 (2015).

    Article  ADS  Google Scholar 

  19. Pelucchi, E. et al. Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures. Phys. Rev. B 83, 205409 (2011).

    Article  ADS  Google Scholar 

  20. Dimastrodonato, V., Pelucchi, E. & Vvedensky, D. D. Self-limiting evolution of seeded quantum wires and dots on patterned substrates. Phys. Rev. Lett. 108, 256102 (2012).

    Article  ADS  Google Scholar 

  21. Moroni, S. T. et al. Indium segregation during III–V quantum wire and quantum dot formation on patterned substrates. J. Appl. Phys. 117, 164313 (2015).

    Article  ADS  Google Scholar 

  22. Zhu, Q. et al. Alloy segregation, quantum confinement, and carrier capture in self-ordered pyramidal quantum wires. Nano Lett. 6, 1036–1041 (2006).

    Article  ADS  Google Scholar 

  23. Dimastrodonato, V., Mereni, L. O., Young, R. J. & Pelucchi, E. Growth and structural characterization of pyramidal site-controlled quantum dots with high uniformity and spectral purity. Phys. Status Solidi B 247, 1862–1866 (2010).

    Article  ADS  Google Scholar 

  24. Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570–575, (2013).

    Article  Google Scholar 

  25. Mereni, L. O., Dimastrodonato, V., Young, R. J. & Pelucchi, E. A site-controlled quantum dot system offering both high uniformity and spectral purity. Appl. Phys. Lett. 94, 223121 (2009).

    Article  ADS  Google Scholar 

  26. Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

    Article  ADS  Google Scholar 

  27. Moreau, E. et al. Quantum cascade of photons in semiconductor quantum dots. Phys. Rev. Lett. 87, 183601 (2001).

    Article  ADS  Google Scholar 

  28. Schliwa, A., Winkelnkemper, M. & Bimberg, D. Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As∕GaAs quantum dots. Phys. Rev. B 76, 205324 (2007).

    Article  ADS  Google Scholar 

  29. Seguin, R. et al. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots. Phys. Rev. Lett. 95, 257402 (2005).

    Article  ADS  Google Scholar 

  30. Abbarchi, M. et al. Exciton fine structure in strain-free GaAs/Al0.3Ga0.7As quantum dots: extrinsic effects. Phys. Rev. B 78, 125321 (2008).

    Article  ADS  Google Scholar 

  31. Langbein, W. et al. Control of fine-structure splitting and biexciton binding in InxGa1-xAs quantum dots by annealing. Phys. Rev. B 69, 161301(R) (2004).

    Article  ADS  Google Scholar 

  32. Hudson, A. J. et al. Coherence of an entangled exciton-photon state. Phys. Rev. Lett. 99, 266802 (2007).

    Article  ADS  Google Scholar 

  33. Bennett, A. J. et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nat. Phys. 6, 947–950 (2010).

    Article  Google Scholar 

  34. Plumhof, J. D. et al. Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1− xAs and InxGa1− xAs/GaAs quantum dots. Phys. Rev. B 83, 121302(R) (2011).

    Article  ADS  Google Scholar 

  35. Trotta, R. et al. Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry. Phys. Rev. Lett. 109, 147401 (2012).

    Article  ADS  Google Scholar 

  36. Karlsson, K. F. et al. Fine structure of exciton complexes in high-symmetry quantum dots: effects of symmetry breaking and symmetry elevation. Phys. Rev. B 81, 161307(R) (2010).

    Article  ADS  Google Scholar 

  37. Young, R. J. et al. Bell-inequality violation with a triggered photon-pair source. Phys. Rev. Lett. 102, 030406 (2009).

    Article  ADS  Google Scholar 

  38. Ekert, A. K. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661–663, (1991).

    Article  ADS  MathSciNet  Google Scholar 

  39. Zhang, J. et al. Electric-field-induced energy tuning of on-demand entangled-photon emission from self-assembled quantum dots. Preprint at: https://arxiv.org/abs/1604.04501 (2016).

  40. Trotta, R. et al. Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun. 7, 10375 (2016).

    Article  ADS  Google Scholar 

  41. Stevenson, R. M. et al. Indistinguishable entangled photons generated by a light-emitting diode. Phys. Rev. Lett. 108, 040503 (2012).

    Article  ADS  Google Scholar 

  42. Ma, Y., Kremer, P. E. & Gerardot, B. D. Efficient photon extraction from a quantum dot in a broad-band planar cavity antenna. J. Appl. Phys. 115, 023106 (2014).

    Article  ADS  Google Scholar 

  43. Gschrey, M. et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat. Commun. 6, 7662 (2015).

    Article  ADS  Google Scholar 

  44. Lindenmann, N. et al. Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express 20, 17667–17677 (2012).

    Article  ADS  Google Scholar 

  45. James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    Article  ADS  Google Scholar 

  46. Shields, A. J., Stevenson, R. M. & Young, R. J. in Single Semiconductor Quantum Dots (ed. Michler, P. ) 227–265 (Springer, 2009).

    Book  Google Scholar 

  47. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was enabled by the Irish Higher Education Authority Programme for Research in Third Level Institutions (2007–2011) via the INSPIRE (Integrated NanoScience Platform for Ireland) programme, and by Science Foundation Ireland under grants 10/IN.1/I3000 and 07/SRC/I1173. The authors are grateful to K. Thomas for the MOVPE system support.

Author information

Authors and Affiliations

Authors

Contributions

T.H.C. fabricated the devices. G.J. and S.T.M. carried out optical characterization, data processing and analysis. A.P. undertook the theoretical calculations. A.G. grew the samples and operated the MOVPE system. E.P. conceived the study and participated in its design and coordination. All authors commented on the final manuscript.

Corresponding author

Correspondence to G. Juska.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 645 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, T., Juska, G., Moroni, S. et al. Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes. Nature Photon 10, 782–787 (2016). https://doi.org/10.1038/nphoton.2016.203

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.203

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing