Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multi-wave coherent control of a solid-state single emitter

Abstract

Coherent control of individual two-level systems is at the heart of any quantum information protocol. In solids1,2,3,4,5,6, two-level systems generated by bound electron–hole excitonic states, trapped in semiconductor quantum dots, display a robust coupling with light, enabling their optical manipulation via avant-garde approaches of nonlinear spectroscopy7,8. Here, we develop a novel toolbox for coherent control of a quantum dot exciton based on the nonlinear wave-mixing responses, which are enhanced by a photonic nanostructure. By employing three, short, resonant laser pulses, we show that we can manipulate, at will, the intrinsic coherence of the quantum dot dipole and therefore engineer the spectro-temporal shape of its coherent emission. Multi-pulse quantum control sequences, which have been successful in NMR spectroscopy and quantum computation9, can now be applied to optically active solid-state quantum bits with application in high-order nonlinear spectroscopy, ultrafast quantum optoelectronics and spread spectrum technology at the single emitter level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wave-mixing spectroscopy of individual negative trions in InAs quantum dots embedded in a low-Q microcavity.
Figure 2: FWM/SWM switching.
Figure 3: Manipulation of the coherent response of a single emitter via wave-mixing switching.
Figure 4: Manipulation of FWM with the area of the control pulse 3.

Similar content being viewed by others

References

  1. Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

    Article  ADS  Google Scholar 

  2. Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nature Nanotech. 9, 986–991 (2014).

    Article  ADS  Google Scholar 

  3. Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nature Mater. 14, 164–168 (2015).

    Article  ADS  Google Scholar 

  4. Yale, C. G. et al. All-optical control of a solid-state spin using coherent dark states. Proc. Natl Acad. Sci. USA 110, 7595–7600 (2013).

    Article  ADS  Google Scholar 

  5. Carter, S. G. et al. Quantum control of a spin qubit coupled to a photonic crystal cavity. Nature Photon. 7, 329–334 (2013).

    Article  ADS  Google Scholar 

  6. Hansom, J. et al. Environment-assisted quantum control of a solid-state spin via coherent dark states. Nature Phys. 10, 725–730 (2014).

    Article  ADS  Google Scholar 

  7. Borri, P. et al. Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett. 87, 157401 (2001).

    Article  ADS  Google Scholar 

  8. Langbein, W. & Patton, B. Heterodyne spectral interferometry for multidimensional nonlinear spectroscopy of individual quantum systems. Opt. Lett. 31, 1151–1153 (2006).

    Article  ADS  Google Scholar 

  9. Vandersypen, L. M. K. & Chuang, I. L. NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2005).

    Article  ADS  Google Scholar 

  10. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  11. Albert, F. et al. Microcavity controlled coupling of excitonic qubits. Nature Commun. 4, 1747 (2013).

    Article  ADS  Google Scholar 

  12. Luxmoore, I. J. et al. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett. 110, 037402 (2013).

    Article  ADS  Google Scholar 

  13. Coles, R. J. et al. Waveguide-coupled photonic crystal cavity for quantum dot spin readout. Opt. Express 22, 2376–2385 (2014).

    Article  ADS  Google Scholar 

  14. Reichert, T. et al. Highly directed emission from self-assembled quantum dots into guided modes in disordered photonic-crystal waveguides. Phys. Rev. B 90, 115310 (2014).

    Article  ADS  Google Scholar 

  15. Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

    Article  ADS  Google Scholar 

  16. Patton, B., Woggon, U. & Langbein, W. Coherent control and polarization readout of individual excitonic states. Phys. Rev. Lett. 95, 266401 (2005).

    Article  ADS  Google Scholar 

  17. Kasprzak, J. et al. Up on the Jaynes–Cummings ladder of a quantum-dot/microcavity system. Nature Mater. 9, 304–308 (2010).

    Article  ADS  Google Scholar 

  18. Kasprzak, J., Patton, B., Savona, V. & Langbein, W. Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging. Nature Photon. 5, 57–63 (2011).

    Article  ADS  Google Scholar 

  19. Kasprzak, J. et al. Vectorial nonlinear coherent response of a strongly confined exciton–biexciton system. New J. Phys. 15, 055006 (2013).

    Article  ADS  Google Scholar 

  20. Maier, S. et al. Bright single photon source based on self-aligned quantum dot–cavity systems. Opt. Express 22, 8136–8142 (2014).

    Article  ADS  Google Scholar 

  21. Benny, Y. et al. Excitation spectroscopy of single quantum dots at tunable positive, neutral, and negative charge states. Phys. Rev. B 86, 085306 (2012).

    Article  ADS  Google Scholar 

  22. Langbein, W. et al. Radiatively limited dephasing in InAs quantum dots. Phys. Rev. B 70, 033301 (2004).

    Article  ADS  Google Scholar 

  23. Proux, R. et al. Measuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots. Phys. Rev. Lett. 114, 067401 (2015).

    Article  ADS  Google Scholar 

  24. Patton, B., Langbein, W., Woggon, U., Maingault, L. & Mariette, H. Time- and spectrally-resolved four-wave mixing in single CdTe/ZnTe quantum dots. Phys. Rev. B 73, 235354 (2006).

    Article  ADS  Google Scholar 

  25. Bonadeo, N. H. et al. Coherent optical control of the quantum state of a single quantum dot. Science 282, 1473–1476 (1998).

    Article  Google Scholar 

  26. Stievater, T. H. et al. Rabi oscillations of excitons in single quantum dots. Phys. Rev. Lett. 87, 133603 (2001).

    Article  ADS  Google Scholar 

  27. Ramsay, A. et al. Phonon-induced Rabi-frequency renormalization of optically driven single InGaAs/GaAs quantum dots. Phys. Rev. Lett. 105, 177402 (2010).

    Article  ADS  Google Scholar 

  28. Zhang, Y., Brown, A. W. & Xiao, M. Observation of interference between four-wave mixing and six-wave mixing. Opt. Lett. 32, 1120–1122 (2007).

    Article  ADS  Google Scholar 

  29. Zhang, Y., Khadka, U., Anderson, B. & Xiao, M. Temporal and spatial interference between four-wave mixing and six-wave mixing channels. Phys. Rev. Lett. 102, 013601 (2009).

    Article  ADS  Google Scholar 

  30. Turner, D. & Nelson, K. Coherent measurements of high-order electronic correlations in quantum wells. Nature 466, 1089–1092 (2010).

    Article  ADS  Google Scholar 

  31. Axt, V. M., Bolton, S. R., Neukirch, U., Sham, L. J. & Chemla, D. S. Evidence of six-particle Coulomb correlations in six-wave-mixing signals from a semiconductor quantum well. Phys. Rev. B 63, 115303 (2001).

    Article  ADS  Google Scholar 

  32. Voss, T. et al. Biexcitonic effects in the coherent control of the excitonic polarization detected in six-wave-mixing signals. Phys. Rev. B 66, 155301 (2002).

    Article  ADS  Google Scholar 

  33. Moody, G. et al. Fifth-order nonlinear optical response of excitonic states in an InAs quantum dot ensemble measured with two-dimensional spectroscopy. Phys. Rev. B 87, 045313 (2013).

    Article  ADS  Google Scholar 

  34. Tahara, H., Ogawa, Y., Minami, F., Akahane, K. & Sasaki, M. Long-time correlation in non-Markovian dephasing of an exciton–phonon system in InAs quantum dots. Phys. Rev. Lett. 112, 147404 (2014).

    Article  ADS  Google Scholar 

  35. Minkov, M. & Savona, V. Radiative coupling of quantum dots in photonic crystal structures. Phys. Rev. B 87, 125306 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the European Research Council Starting Grant ‘PICSEN’ (contract no. 306387).

Author information

Authors and Affiliations

Authors

Contributions

F.F., Q.M. and J.K. carried out the experiments. F.F., Q.M. and J.K. performed the data analysis. F.F. conceived the idea of a multi-wave coherent control scheme and performed the theoretical modelling. J.K. designed and supervised the experiments. W.L. provided the analysis tool. G.N. and C.H. provided technical support. C.S., S.H. and M.K. fabricated the sample. F.F. and J.K. co-wrote the manuscript, with the participation of G.N. and W.L.

Corresponding authors

Correspondence to F. Fras or J. Kasprzak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2028 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fras, F., Mermillod, Q., Nogues, G. et al. Multi-wave coherent control of a solid-state single emitter. Nature Photon 10, 155–158 (2016). https://doi.org/10.1038/nphoton.2016.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing