Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An ultrawide-bandwidth single-sideband modulator for terahertz frequencies

Abstract

Wireless high-speed data communication using terahertz (THz) carrier frequencies is becoming reality with data rates beyond 100 Gbit s–1. Many of the mobile applications use internet access and require that THz wireless base stations are connected to a global network, such as the radio-over-fibre network. We present the realization of an ultrawide bandwidth THz optical single-sideband (OSSB) modulator for converting (free-space) THz signals to THz optical modulations with an increased spectral efficiency. THz OSSB will mitigate chromatic dispersion-induced propagation losses in optical fibres and support digital modulation schemes. We demonstrate THz OSSB for free-space radiation between 0.3 and 1.0 THz using a specially designed dichroic beamsplitter for signal and carrier, and a planar light-wave circuit with multimode interference structures. This arrangement of optical elements mimics the Hartley single-sideband modulator for electronics signals and accomplishes the required Hilbert transform without any frequency-dependent tuning element over an ultrawide THz spectrum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental scheme for SSB generation.
Figure 2: Single-shot sideband spectra at 0.69 THz.
Figure 3: Visibility measurements.
Figure 4: The maximum observed visibility for OSSB generation at different THz frequencies.

Similar content being viewed by others

References

  1. Cherry, S. Edholm's law of bandwidth. IEEE Spectrum 41, 58–60 (2004).

    Article  Google Scholar 

  2. Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  3. Federici, J. & Moeller, L. Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 107, 111101 (2010).

    Article  ADS  Google Scholar 

  4. Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nat. Photon. 7, 977–981 (2010).

    Article  ADS  Google Scholar 

  5. Akyildiz, I. F., Jornet, J. M. & Han, C. Terahertz band: next frontier for wireless communications. Phys. Commun. 12, 16–32 (2014).

    Article  Google Scholar 

  6. Karl, N. J., McKinney, R. W., Monnai, Y., Mendis, R. & Mittleman, D. M. Frequency-division multiplexing in the terahertz range using a leaky-wave antenna. Nat. Photon. 9, 717–720 (2015).

    Article  ADS  Google Scholar 

  7. Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nat. Mater. 1, 26–33 (2002).

    Article  ADS  Google Scholar 

  8. Yoshimizu, Y. et al. Generation of coherent sub-terahertz carrier with phase stabilization for wireless communications. J. Commun. Netw. 15, 569–575 (2013).

    Article  Google Scholar 

  9. Song, H., Tajima, T., Yaita, M. & Kagami, O. Recent progress in terahertz MMICs and packages for terahertz wireless communications at 300 GHz. In 39th Int. Conf. Infrared, Millimeter, and Terahertz Waves (eds Siegel, P. H. & Walker, C.) 1–1 (IEEE, 2014).

  10. Kallfass, I. et al. MMIC chipset for 300 GHz indoor wireless communication. In Int. Conf. Microwaves, Communications, Antennas and Electronic Systems (eds Auster, S. & Boag, A.) 1–4 (IEEE, 2015).

  11. Yang, Y., Shutler, A. & Grischkowsky, D. Measurement of the transmission of the atmosphere from 0.2 to 2 THz. Opt. Express 19, 8830–8838 (2011).

    Article  ADS  Google Scholar 

  12. Huang, K.-C. & Wang, Z. Terahertz terabit wireless communication. IEEE Microw. Mag. 12, 108–116 (2011).

    Article  Google Scholar 

  13. Beas, J., Castanon, G., Aldaya, I., Aragón-Zavala, A. & Campuzano, G. Millimeter-wave frequency radio over fiber systems: a survey. IEEE Commun. Surv. Tut. 15, 1593–1619 (2013).

    Article  Google Scholar 

  14. Alavi, S. E. et al. Towards 5G: a photonic based millimeter wave signal generation for applying in 5G access fronthaul. Sci. Rep. 6, 19891 (2016).

    Article  ADS  Google Scholar 

  15. Wu, Q. & Zhang, X.-C. Ultrafast electro-optic field sensors. Appl. Phys. Lett. 68, 1604–1606 (1996).

    Article  ADS  Google Scholar 

  16. Sinyukov, A. M. & Hayden, L. M. Efficient electrooptic polymers for THz applications. J. Phys. Chem. B 108, 8515–8522 (2004).

    Article  Google Scholar 

  17. Smith, G. H. & Novak, D. Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects. IEEE Photon. Technol. Lett. 10, 141–143 (1998).

    Article  ADS  Google Scholar 

  18. Kitayama, K. Highly spectrum efficient OFDM/PDM wireless networks by using optical SSB modulation. J. Lightwave Technol. 15, 969–976 (1998).

    Article  ADS  Google Scholar 

  19. Lu, H. H., Tzeng, S. J., Chen, C. Y. & Peng, H. C. CSO/CTB performances improvement by using optical SSB filter at the receiving site. IEEE Trans. Commun. 53, 752–575 (2005).

    Google Scholar 

  20. Xiao, S. & Weiner, A. M. Optical carrier-suppressed single sideband (O-CS-SSB) modulation using a hyperfine blocking filter based on a virtually imaged phased-array (VIPA). IEEE Photon. Techn. Lett. 17, 1522–1524 (2005).

    Article  ADS  Google Scholar 

  21. Li, F. & Helmy, A. S. Gigahertz to terahertz tunable all-optical single-side-band microwave generation via semiconductor optical amplifier gain engineering. Opt. Lett. 38, 4542–4545 (2013).

    Article  ADS  Google Scholar 

  22. Zheng, J. et al. Orthogonal single-sideband signal generation using improved Sagnac-loop-based modulator. IEEE Photon. Technol. Lett. 26, 2229–2231 (2014).

    Article  ADS  Google Scholar 

  23. Smith, G. H., Novak, D. & Ahmed, Z. Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems. Electron. Lett. 33, 74–75 (1997).

    Article  Google Scholar 

  24. Burla, M. et al. Integrated waveguide Bragg gratings for microwave photonics signal processing. Opt. Express 21, 25120–25147 (2013).

    Article  ADS  Google Scholar 

  25. Sima, C. et al. Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication. Opt. Express 38, 3448–3451 (2013).

    Google Scholar 

  26. Sagues, M. & Loayssa, A. Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering. Opt. Express 18, 22906–22914 (2010).

    Article  ADS  Google Scholar 

  27. Zhen'ao, L., Liang, X., Xiaoqiong, Q. & Hui, W. 30-GHz millimeter-wave carrier generation with single sideband modulation based on stimulated Brillouin scattering. J. Semicond. 33, 092004 (2011).

    Google Scholar 

  28. Campillo, A. L. Orthogonally polarized single sideband modulator. Opt. Lett. 32, 3152–3154 (2007).

    Article  ADS  Google Scholar 

  29. Wang, W. T., Liu, J. G., Mei, H. K. & Zhu, N. H. Phase-coherent orthogonally polarized optical single sideband modulation with arbitrarily tunable optical carrier-to-sideband ratio. Opt. Express 24, 388–399 (2016).

    Article  ADS  Google Scholar 

  30. Hartley, R. V. Transmission of information. Bell Syst. Tech. J. 7, 535–563 (1928).

    Article  Google Scholar 

  31. Esman, R. D. & Williams, K. J. Wideband efficiency improvement of fiber optic systems by carrier subtraction. IEEE Photon. Technol. Lett. 7, 218–220 (1995).

    Article  ADS  Google Scholar 

  32. Yang, F. S., Marhic, M. E. & Kazovsky, L. G. Nonlinear crosstalk and two countermeasures in SCM-WDM optical communication systems. J. Lightwave Technol. 18, 512–520 (2000).

    Article  ADS  Google Scholar 

  33. Jansen, S., Morita, I. & Tanaka, H. Carrier-to-signal power ratio in fiber-optic SSB-OFDM transmission systems. In Inst. Electronics, Information and Communication Engineers Gen. Conf. B-10–24, 363 (Institute of Electronics, Information and Communication Engineers, 2007).

  34. Carlson, A. B., Crilly, P. B. & Rutledge, J. C. Communication Systems: an Introduction to Signals and Noise in Electrical Communication 167–169 (McGraw-Hill, 1986).

    Google Scholar 

  35. Rao, D. N. & Kumar, V. N. Stability improvements for an interferometer through study of spectral interference patterns. Appl. Opt. 38, 2014–2017 (1999).

    Article  ADS  Google Scholar 

  36. Schnarrenberger, M., Zimmermann, L., Mitze, T., Bruns, J. & Petermann, K. Mach–Zehnder interferometer (MZI) with more than 20 dB extinction ratio on silicon-on-insulator. In 2nd IEEE Int. Conf. Group IV Photonics 132–133 (IEEE, 2005).

  37. Jazbinsek, M., Mutter, L. & Günter, P. Photonic applications with the organic nonlinear optical crystal DAST. IEEE J. Sel. Top. Quantum Electron. 14, 1298–1311 (2008).

    Article  ADS  Google Scholar 

  38. Han, J., Seo, B. J., Han, Y., Jalali, B. & Fetterman, H. R. Reduction of fiber chromatic dispersion effects in fiber-wireless and photonic time-stretching system using polymer modulators. J. Lightwave Technol. 21, 1504–1509 (2003).

    Article  ADS  Google Scholar 

  39. McLaughlin, C. V. et al. Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths. Appl. Phys. Lett. 92, 151107 (2008).

    Article  ADS  Google Scholar 

  40. Kim, T.-D. et al. Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses. J. Am. Chem. Soc. 129, 488–489 (2007).

    Article  Google Scholar 

  41. Wijayanto, Y. N., Murata, H. & Okamura, Y. Electro-optic wireless millimeter-wave-lightwave signal converters using planar Yagi–Uda array antennas coupled to resonant electrodes. In Proc. 17th Opto-Electronic Communications Conf. (eds Kim, C.-M. & Chung, Y. C.) 5E1–2 (IEEE, 2012).

  42. Salamin, Y. et al. Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna. Nano Lett. 15, 8342–8346 (2015).

    Article  ADS  Google Scholar 

  43. Zhang, X. et al. Integrated broadband bowtie antenna on transparent silica substrate. IEEE Antennas Wirel. Propag. Lett. 15, 1377–1381 (2016).

    Article  ADS  Google Scholar 

  44. Seo, M. A. et al. Terahertz field enhancement by a metallic nanoslit operating beyond the skin-depth limit. Nat. Photon. 3, 152–156 (2009).

    Article  ADS  Google Scholar 

  45. Novitsky, A., Zalkovskij, M., Malureanu, R., Jepsen, P. U. & Lavrinenko, A. V. Optical waveguide mode control by nanoslit-enhanced terahertz field. Opt. Lett. 37, 3903–3905 (2012).

    Article  ADS  Google Scholar 

  46. Park, S. J. et al. Detection of microorganisms using terahertz metamaterials. Sci. Rep. 4, 4988 (2014).

    Article  Google Scholar 

  47. Zhaunerchyk, V., Oepts, D., Jongma, R. T. & van der Zande, W. J. Influence of waveguide dispersion on short-pulse free electron laser detuning curves. Phys. Rev. ST Accel. Beams 15, 050701 (2012).

    Article  ADS  Google Scholar 

  48. Grischkowsky, D., Keiding, S., Van Exter, M. & Fattinger, C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 7, 2006–2015 (1990).

    Article  ADS  Google Scholar 

  49. Bauer, T., Kolb, J. S., Loffler, T., Mohler, E. & Roskos, H. G. Indium–tin–oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation. J. Appl. Phys. 92, 2210–2212 (2002).

    Article  ADS  Google Scholar 

  50. Gallot, G. & Grischkowsky, D. Electro-optic detection of terahertz radiation. J. Opt. Soc. Am. B 16, 1204–1212 (1999).

    Article  ADS  Google Scholar 

  51. Wijnen, F. J., Berden, G. & Jongma, R. T. A simple optical spectral calibration technique for pulsed THz sources. Opt. Express 18, 26517–26524 (2010).

    Article  ADS  Google Scholar 

  52. Jamison, S. P., Berden, G., Phillips, P. J., Gillespie, W. A. & MacLeod, A. M. Upconversion of a relativistic Coulomb field terahertz pulse to the near infrared. Appl. Phys. Lett. 23, 231114 (2010).

    Article  ADS  Google Scholar 

  53. Berden, G. et al. Benchmarking of electro-optic monitors for femtosecond electron bunches. Phys. Rev. Lett. 99, 164801 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organization for Scientific Research (NWO). FLARE is funded via the ‘Big Facilities’ programme of NWO. The authors gratefully thank the FELIX laboratory staff for their skilled support and A. Kimel for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.S.M., G.B. and W.J.Z. conceived and designed the experiments. A.S.M. built the experimental set-up and performed all the measurements. D.D.A., M.O. and R.T.J. operated the THz free-electron laser (FLARE), the FLARE diagnostic tools and the upconversion spectrometer. A.S.M., R.T.J. and W.J.Z. analysed the experimental data. A.S.M. and W.J.Z. wrote the manuscript with contributions from G.B. and R.T.J.

Corresponding author

Correspondence to G. Berden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meijer, A., Berden, G., Arslanov, D. et al. An ultrawide-bandwidth single-sideband modulator for terahertz frequencies. Nature Photon 10, 740–744 (2016). https://doi.org/10.1038/nphoton.2016.182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.182

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing