Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nonlinear spin control by terahertz-driven anisotropy fields


Future information technologies, such as ultrafast data recording, quantum computation or spintronics, call for ever faster spin control by light1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16. Intense terahertz pulses can couple to spins on the intrinsic energy scale of magnetic excitations5,11. Here, we explore a novel electric dipole-mediated mechanism of nonlinear terahertz-spin coupling that is much stronger than linear Zeeman coupling to the terahertz magnetic field5,10. Using the prototypical antiferromagnet thulium orthoferrite (TmFeO3), we demonstrate that resonant terahertz pumping of electronic orbital transitions modifies the magnetic anisotropy for ordered Fe3+ spins and triggers large-amplitude coherent spin oscillations. This mechanism is inherently nonlinear, it can be tailored by spectral shaping of the terahertz waveforms and its efficiency outperforms the Zeeman torque by an order of magnitude. Because orbital states govern the magnetic anisotropy in all transition-metal oxides, the demonstrated control scheme is expected to be applicable to many magnetic materials.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Principle of spin control by a terahertz-induced anisotropy torque.
Figure 2: Overview of the experiment.
Figure 3: Nonlinear terahertz-magnon interaction.
Figure 4: Control of terahertz-induced nonlinear torque by spectral shaping.


  1. Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    ADS  Article  Google Scholar 

  2. Van Kampen, M. et al. All-optical probe of coherent spin waves. Phys. Rev. Lett. 88, 227201 (2002).

    ADS  Article  Google Scholar 

  3. Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, Th. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3 . Nature 429, 850–853 (2004).

    ADS  Article  Google Scholar 

  4. Wall, S., Prabhakaran, D., Boothroyd, A. T. & Cavalleri, A. Ultrafast coupling between light, coherent lattice vibrations, and the magnetic structure of semicovalent LaMnO3 . Phys. Rev. Lett. 103, 097402 (2009).

    ADS  Article  Google Scholar 

  5. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).

    ADS  Article  Google Scholar 

  6. Kanda, N. et al. The vectorial control of magnetization by light. Nat. Commun. 2, 362 (2011).

    ADS  Article  Google Scholar 

  7. Kim, K. W. et al. Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations. Nat. Mater. 11, 497–501 (2012).

    ADS  Article  Google Scholar 

  8. Wienhold, S., Hinzke, D. & Nowak, U. THz switching of antiferromagnets and ferrimagnets. Phys. Rev. Lett. 108, 247207 (2012).

    ADS  Article  Google Scholar 

  9. Li, T. et al. Femtosecond switching of magnetism via strongly correlated spin–charge quantum excitations. Nature 496, 69–73 (2013).

    ADS  Article  Google Scholar 

  10. Vicario, C. et al. Off-resonant magnetization dynamics phase-locked to an intense phase-stable terahertz transient. Nat. Photon. 7, 720–723 (2013).

    ADS  Article  Google Scholar 

  11. Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 7, 680–690 (2013).

    ADS  Article  Google Scholar 

  12. Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014).

    ADS  MathSciNet  Article  Google Scholar 

  13. Kubacka, T. et al. Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343, 1333–1336 (2014).

    ADS  Article  Google Scholar 

  14. Mikhaylovskiy, R. V. et al. Ultrafast optical modification of exchange interactions in iron oxides. Nat. Commun. 6, 8190 (2015).

    ADS  Article  Google Scholar 

  15. Satoh, T., Iida, R., Higuchi, T., Fiebig, M. & Shimura, T. Writing and reading of an arbitrary optical polarization state in an antiferromagnet. Nat. Photon. 9, 25–29 (2015).

    ADS  Article  Google Scholar 

  16. Nova, T. F. et al. An effective magnetic field from optically driven phonons. Nat. Phys. (in the press); ibid. Condens. Mater. Preprint at (2015).

  17. Fausti, D. et al. Light induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    ADS  Article  Google Scholar 

  18. Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    ADS  Article  Google Scholar 

  19. Zaks, B., Liu, R. B. & Sherwin, M. S. Experimental observation of electron–hole recollisions. Nature 483, 580–583 (2013).

    ADS  Article  Google Scholar 

  20. Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photon. 7, 620–625 (2013).

    ADS  Article  Google Scholar 

  21. Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

    ADS  Article  Google Scholar 

  22. Maag, T. et al. Coherent cyclotron motion beyond Kohn's theorem. Nat. Phys. 12, 119–123 (2016).

    Article  Google Scholar 

  23. Dodge, J. S. et al. Time-resolved optical observation of spin-wave dynamics. Phys. Rev. Lett. 83, 4650–4653 (1999).

    ADS  Article  Google Scholar 

  24. Lingos, P. C., Wang, J. & Perakis, I. E. Manipulating femtosecond spin-orbit torques with laser pulse sequences to control magnetic memory states and ringing. Phys. Rev. B 91, 195203 (2015).

    ADS  Article  Google Scholar 

  25. Bossini, D. et al. Time-resolved nonlinear infrared spectroscopy of samarium ions in SmFeO3 . Phys. Rev. B 87, 085101 (2013).

    ADS  Article  Google Scholar 

  26. Reid, A. H. M., Rasing, Th., Pisarev, R. V., Dürr, H. A. & Hoffmann, M. C. Terahertz-driven magnetism dynamics in the orthoferrite DyFeO3 . Appl. Phys. Lett. 106, 082403 (2015).

    ADS  Article  Google Scholar 

  27. White, R. L. Review of recent work on the magnetic and spectroscopic properties of the rare-earth orthoferrites. J. Appl. Phys. 40, 1061–1069 (1969).

    ADS  Article  Google Scholar 

  28. Srinivasan, G. & Slavin, A. N. High Frequency Processes in Magnetic Materials Ch. 2 (World Scientific, 1995).

    Book  Google Scholar 

  29. Belov, K. P., Volkov, R. A., Goranskii, B. P., Kadomtseva, A. M. & Uskov, V. V. Nature of the transitions during the spontaneous reorientation of spins in rare-earth orthoferrites. Fiz. Tverd. Tela 11, 1148–1151 (1969), Sov. Phys. Solid State 11, 935–938 (1969).

    Google Scholar 

  30. Smith, B. T., Yamamoto, J. & Bell, E. E. Far-infrared transmittance of Tb, Ho, Tm, Er, and Yb orthoferrite. J. Opt. Soc. Am. 65, 605–607 (1975).

    ADS  Article  Google Scholar 

  31. Zvezdin, A. K. Dynamics of domain walls in weak ferromagnets. JETP Lett. 29, 553–556 (1979).

    ADS  Google Scholar 

  32. Andreev, A. F. & Marchenko, V. I. Symmetry and the macroscopic dynamics of magnetic materials. Sov. Phys. Usp. 23, 21–31 (1980).

    ADS  Article  Google Scholar 

Download references


The authors thank M. Furthmeier for technical assistance, R.V. Pisarev and A.M. Balbashov for providing samples, T.L. Cocker for discussions and Th. Rasing for continuous support. S.B., M.H. and R.H. were supported by the European Research Council through ERC grant no. 305003 (QUANTUMsubCYCLE) and the Deutsche Forschungsgemeinschaft (DFG) through Collaborative Research Centre SFB 689. A.V.K., R.V.M. and A.K.Z. were supported by the European Community Seventh Framework Programme FP7-NMP-2011-SMALL-281043 (FEMTOSPIN), the European Research Council ERC (grant agreement no. 257280, Femtomagnetism), the Foundation for Fundamental Research on Matter (FOM) as well as the Netherlands Organization for Scientific Research (NWO) and the programme ‘Leading Scientist’ of the Russian Ministry of Education and Science (14.z50.31.0034). T.K. acknowledges the Deutsche Forschungsgemeinschaft and ERC for support through priority programme SPP 1538 and the ERC grant no. 681917 (TERAMAG), respectively.

Author information

Authors and Affiliations



S.B., A.V.K., R.H. and R.V.M. conceived the study, carried out the experiments and analysed the data. A.K.Z. and R.V.M. developed the theoretical model. S.B., M.H., A.V.K., R.H. and R.V.M. wrote the manuscript with feedback from T.K. and A.K.Z. All authors discussed the results.

Corresponding authors

Correspondence to R. Huber or R. V. Mikhaylovskiy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1363 kb)

Supplementary information

Supplementary movie 1 (MOV 2756 kb)

Supplementary information

Supplementary movie 2 (MOV 672 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baierl, S., Hohenleutner, M., Kampfrath, T. et al. Nonlinear spin control by terahertz-driven anisotropy fields. Nature Photon 10, 715–718 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing