Nonlinear spin control by terahertz-driven anisotropy fields

Article metrics

Abstract

Future information technologies, such as ultrafast data recording, quantum computation or spintronics, call for ever faster spin control by light1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16. Intense terahertz pulses can couple to spins on the intrinsic energy scale of magnetic excitations5,11. Here, we explore a novel electric dipole-mediated mechanism of nonlinear terahertz-spin coupling that is much stronger than linear Zeeman coupling to the terahertz magnetic field5,10. Using the prototypical antiferromagnet thulium orthoferrite (TmFeO3), we demonstrate that resonant terahertz pumping of electronic orbital transitions modifies the magnetic anisotropy for ordered Fe3+ spins and triggers large-amplitude coherent spin oscillations. This mechanism is inherently nonlinear, it can be tailored by spectral shaping of the terahertz waveforms and its efficiency outperforms the Zeeman torque by an order of magnitude. Because orbital states govern the magnetic anisotropy in all transition-metal oxides, the demonstrated control scheme is expected to be applicable to many magnetic materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Principle of spin control by a terahertz-induced anisotropy torque.
Figure 2: Overview of the experiment.
Figure 3: Nonlinear terahertz-magnon interaction.
Figure 4: Control of terahertz-induced nonlinear torque by spectral shaping.

References

  1. 1

    Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

  2. 2

    Van Kampen, M. et al. All-optical probe of coherent spin waves. Phys. Rev. Lett. 88, 227201 (2002).

  3. 3

    Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, Th. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3 . Nature 429, 850–853 (2004).

  4. 4

    Wall, S., Prabhakaran, D., Boothroyd, A. T. & Cavalleri, A. Ultrafast coupling between light, coherent lattice vibrations, and the magnetic structure of semicovalent LaMnO3 . Phys. Rev. Lett. 103, 097402 (2009).

  5. 5

    Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).

  6. 6

    Kanda, N. et al. The vectorial control of magnetization by light. Nat. Commun. 2, 362 (2011).

  7. 7

    Kim, K. W. et al. Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations. Nat. Mater. 11, 497–501 (2012).

  8. 8

    Wienhold, S., Hinzke, D. & Nowak, U. THz switching of antiferromagnets and ferrimagnets. Phys. Rev. Lett. 108, 247207 (2012).

  9. 9

    Li, T. et al. Femtosecond switching of magnetism via strongly correlated spin–charge quantum excitations. Nature 496, 69–73 (2013).

  10. 10

    Vicario, C. et al. Off-resonant magnetization dynamics phase-locked to an intense phase-stable terahertz transient. Nat. Photon. 7, 720–723 (2013).

  11. 11

    Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 7, 680–690 (2013).

  12. 12

    Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014).

  13. 13

    Kubacka, T. et al. Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343, 1333–1336 (2014).

  14. 14

    Mikhaylovskiy, R. V. et al. Ultrafast optical modification of exchange interactions in iron oxides. Nat. Commun. 6, 8190 (2015).

  15. 15

    Satoh, T., Iida, R., Higuchi, T., Fiebig, M. & Shimura, T. Writing and reading of an arbitrary optical polarization state in an antiferromagnet. Nat. Photon. 9, 25–29 (2015).

  16. 16

    Nova, T. F. et al. An effective magnetic field from optically driven phonons. Nat. Phys. http://dx.doi.org/10.1038/nphys3925 (in the press); ibid. Condens. Mater. Preprint at http://arXiv.org/abs/1512.06351 (2015).

  17. 17

    Fausti, D. et al. Light induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

  18. 18

    Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

  19. 19

    Zaks, B., Liu, R. B. & Sherwin, M. S. Experimental observation of electron–hole recollisions. Nature 483, 580–583 (2013).

  20. 20

    Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photon. 7, 620–625 (2013).

  21. 21

    Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

  22. 22

    Maag, T. et al. Coherent cyclotron motion beyond Kohn's theorem. Nat. Phys. 12, 119–123 (2016).

  23. 23

    Dodge, J. S. et al. Time-resolved optical observation of spin-wave dynamics. Phys. Rev. Lett. 83, 4650–4653 (1999).

  24. 24

    Lingos, P. C., Wang, J. & Perakis, I. E. Manipulating femtosecond spin-orbit torques with laser pulse sequences to control magnetic memory states and ringing. Phys. Rev. B 91, 195203 (2015).

  25. 25

    Bossini, D. et al. Time-resolved nonlinear infrared spectroscopy of samarium ions in SmFeO3 . Phys. Rev. B 87, 085101 (2013).

  26. 26

    Reid, A. H. M., Rasing, Th., Pisarev, R. V., Dürr, H. A. & Hoffmann, M. C. Terahertz-driven magnetism dynamics in the orthoferrite DyFeO3 . Appl. Phys. Lett. 106, 082403 (2015).

  27. 27

    White, R. L. Review of recent work on the magnetic and spectroscopic properties of the rare-earth orthoferrites. J. Appl. Phys. 40, 1061–1069 (1969).

  28. 28

    Srinivasan, G. & Slavin, A. N. High Frequency Processes in Magnetic Materials Ch. 2 (World Scientific, 1995).

  29. 29

    Belov, K. P., Volkov, R. A., Goranskii, B. P., Kadomtseva, A. M. & Uskov, V. V. Nature of the transitions during the spontaneous reorientation of spins in rare-earth orthoferrites. Fiz. Tverd. Tela 11, 1148–1151 (1969), Sov. Phys. Solid State 11, 935–938 (1969).

  30. 30

    Smith, B. T., Yamamoto, J. & Bell, E. E. Far-infrared transmittance of Tb, Ho, Tm, Er, and Yb orthoferrite. J. Opt. Soc. Am. 65, 605–607 (1975).

  31. 31

    Zvezdin, A. K. Dynamics of domain walls in weak ferromagnets. JETP Lett. 29, 553–556 (1979).

  32. 32

    Andreev, A. F. & Marchenko, V. I. Symmetry and the macroscopic dynamics of magnetic materials. Sov. Phys. Usp. 23, 21–31 (1980).

Download references

Acknowledgements

The authors thank M. Furthmeier for technical assistance, R.V. Pisarev and A.M. Balbashov for providing samples, T.L. Cocker for discussions and Th. Rasing for continuous support. S.B., M.H. and R.H. were supported by the European Research Council through ERC grant no. 305003 (QUANTUMsubCYCLE) and the Deutsche Forschungsgemeinschaft (DFG) through Collaborative Research Centre SFB 689. A.V.K., R.V.M. and A.K.Z. were supported by the European Community Seventh Framework Programme FP7-NMP-2011-SMALL-281043 (FEMTOSPIN), the European Research Council ERC (grant agreement no. 257280, Femtomagnetism), the Foundation for Fundamental Research on Matter (FOM) as well as the Netherlands Organization for Scientific Research (NWO) and the programme ‘Leading Scientist’ of the Russian Ministry of Education and Science (14.z50.31.0034). T.K. acknowledges the Deutsche Forschungsgemeinschaft and ERC for support through priority programme SPP 1538 and the ERC grant no. 681917 (TERAMAG), respectively.

Author information

S.B., A.V.K., R.H. and R.V.M. conceived the study, carried out the experiments and analysed the data. A.K.Z. and R.V.M. developed the theoretical model. S.B., M.H., A.V.K., R.H. and R.V.M. wrote the manuscript with feedback from T.K. and A.K.Z. All authors discussed the results.

Correspondence to R. Huber or R. V. Mikhaylovskiy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1363 kb)

Supplementary information

Supplementary movie 1 (MOV 2756 kb)

Supplementary information

Supplementary movie 2 (MOV 672 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baierl, S., Hohenleutner, M., Kampfrath, T. et al. Nonlinear spin control by terahertz-driven anisotropy fields. Nature Photon 10, 715–718 (2016) doi:10.1038/nphoton.2016.181

Download citation

Further reading