Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fully integrated quantum photonic circuit with an electrically driven light source


Photonic quantum technologies allow quantum phenomena to be exploited in applications such as quantum cryptography, quantum simulation and quantum computation. A key requirement for practical devices is the scalable integration of single-photon sources, detectors and linear optical elements on a common platform. Nanophotonic circuits enable the realization of complex linear optical systems, while non-classical light can be measured with waveguide-integrated detectors. However, reproducible single-photon sources with high brightness and compatibility with photonic devices remain elusive for fully integrated systems. Here, we report the observation of antibunching in the light emitted from an electrically driven carbon nanotube embedded within a photonic quantum circuit. Non-classical light generated on chip is recorded under cryogenic conditions with waveguide-integrated superconducting single-photon detectors, without requiring optical filtering. Because exclusively scalable fabrication and deposition methods are used, our results establish carbon nanotubes as promising nanoscale single-photon emitters for hybrid quantum photonic devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrated circuit design.
Figure 2: Spectral characterization of the sc-SWCNT emitter.
Figure 3: Observation of antibunching in electrically driven sc-SWCNTs.
Figure 4: Device count rate and SWCNT efficiency.


  1. Beveratos, A. et al. Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002).

    Article  ADS  Google Scholar 

  2. O'Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  3. Shadbolt, P. J. et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photon. 6, 45–49 (2011).

    Article  ADS  Google Scholar 

  4. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

    Article  Google Scholar 

  5. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    Article  ADS  Google Scholar 

  6. Wang, Y. et al. Quantum simulation of helium hydride cation in a solid-state spin register. ACS Nano 9, 7769–7774 (2015).

    Article  Google Scholar 

  7. Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540–544 (2013).

    Article  ADS  Google Scholar 

  8. Heeres, R. W., Kouwenhoven, L. P. & Zwiller, V. Quantum interference in plasmonic circuits. Nat. Nanotech. 8, 719–722 (2013).

    Article  ADS  Google Scholar 

  9. Salter, C. L. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010).

    Article  ADS  Google Scholar 

  10. Mizuochi, N. et al. Electrically driven single-photon source at room temperature in diamond. Nat. Photon. 6, 299–303 (2012).

    Article  ADS  Google Scholar 

  11. Vijayaraghavan, A. et al. Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett. 7, 1556–1560 (2007).

    Article  ADS  Google Scholar 

  12. Pyatkov, F. et al. Cavity enhanced light emission from electrically driven carbon nanotubes. Nat. Photon. 10, 420–427 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  13. Miura, R. et al. Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters. Nat. Commun. 5, 5580 (2014).

    Article  ADS  Google Scholar 

  14. Khasminskaya, S., Pyatkov, F., Flavel, B. S., Pernice, W. H. P. & Krupke, R. Waveguide-integrated light-emitting carbon nanotubes. Adv. Mater. 26, 3465–3472 (2014).

    Article  Google Scholar 

  15. Liu, H., Nishide, D., Tanaka, T. & Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2, 309 (2011).

    Article  ADS  Google Scholar 

  16. Flavel, B. S., Kappes, M. M., Krupke, R. & Hennrich, F. Separation of single-walled carbon nanotubes by 1-dodecanol-mediated size-exclusion chromatography. ACS Nano 7, 3557–3564 (2013).

    Article  Google Scholar 

  17. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  ADS  Google Scholar 

  18. Misewich, J. A. et al. Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003).

    Article  ADS  Google Scholar 

  19. Mori, T., Yamauchi, Y., Honda, S. & Maki, H. An electrically driven, ultrahigh-speed, on-chip light emitter based on carbon nanotubes. Nano Lett. 14, 3277–3283 (2014).

    Article  ADS  Google Scholar 

  20. Högele, A., Galland, C., Winger, M. & Imamogˇlu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 5–8 (2008).

    Article  Google Scholar 

  21. Hofmann, M. S. et al. Bright, long-lived and coherent excitons in carbon nanotube quantum dots. Nat. Nanotech. 8, 502–505 (2013).

    Article  ADS  Google Scholar 

  22. Ma, X., Hartmann, N. F., Baldwin, J. K. S., Doorn, S. K. & Htoon, H. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat. Nanotech. 10, 671–675 (2015).

    Article  ADS  Google Scholar 

  23. Gol'tsman, G. N. et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001).

    Article  ADS  Google Scholar 

  24. Pernice, W. H. P. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012).

    Article  ADS  Google Scholar 

  25. Sprengers, J. P. et al. Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 99, 14–17 (2011).

    Article  Google Scholar 

  26. Esmaeilzadeh, I. et al. Deterministic integration of single photon sources in silicon based photonic circuits. Nano Lett. 16, 2289–2294 (2016).

    Article  Google Scholar 

  27. Reithmaier, G. et al. On-chip generation, routing, and detection of resonance fluorescence. Nano Lett. 15, 5208–5213 (2015).

    Article  ADS  Google Scholar 

  28. Stürzl, N., Hennrich, F., Lebedkin, S. & Kappes, M. M. Near monochiral single-walled carbon nanotube dispersions in organic solvents. J. Phys. Chem. C 113, 14628–14632 (2009).

    Article  Google Scholar 

  29. Marquardt, C. W. et al. Electroluminescence from a single nanotube–molecule–nanotube junction. Nat. Nanotech. 5, 863–867 (2010).

    Article  ADS  Google Scholar 

  30. Pfeiffer, M. H. P. et al. Electroluminescence from chirality-sorted (9,7)- semiconducting carbon nanotube devices. Opt. Express 19, 1184–1189 (2011).

    Article  Google Scholar 

  31. Jakubka, F. et al. Mapping charge transport by electroluminescence in chirality-selected carbon nanotube networks. ACS Nano 7, 7428–7435 (2013).

    Article  Google Scholar 

  32. Chen, J. et al. Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310, 1171–1174 (2005).

    Article  ADS  Google Scholar 

  33. Laucht, A. et al. A waveguide-coupled on-chip single-photon source. Phys. Rev. X 2, 011014 (2012).

    Google Scholar 

  34. Ishii, A., Yoshida, M. & Kato, Y. K. Exciton diffusion, end quenching, and exciton–exciton annihilation in individual air-suspended carbon nanotubes. Phys. Rev. B 91, 125427 (2015).

    Article  ADS  Google Scholar 

  35. Mueller, T. et al. Efficient narrow-band light emission from a single carbon nanotube p–n diode. Nat. Nanotech. 5, 27–31 (2010).

    Article  ADS  Google Scholar 

Download references


W.H.P.P. and S.K. acknowledge support by Deutsche Forschungsgemeinschaft (DFG) grants PE 1832/1-1 and the Helmholtz Society through grant HIRG-0005, as well as support by the DFG and the State of Baden-Württemberg through the DFG Center for Functional Nanostructures (CFN). R.K. and F.P. acknowledge funding by the Volkswagen Foundation. M.K., F.H. and R.K. acknowledge support by the Helmholtz Society through programme Science and Technology of Nanosystems (STN) and by the Karlsruhe Nano Micro Facility (KNMF). V.K., A.K., G.G. acknowledge financial support from the Russian Foundation for Basic Research (RFBR) grant no. 15-52-10044 and state contract no. 14.B25.31.0007. The authors thank S. Diewald, S. Kühn and S. Dehm for help with device fabrication, R. Fechner for help with initial device characterization, B. Voronov for help with NbN thin-film deposition as well as A. Riaz for assistance with the spectral characterization of SWCNTs.

Author information

Authors and Affiliations



W.H.P.P. and R.K. conceived the experiments. S.K. and F.P. fabricated the devices. K.S. and C.R. performed the fitting simulations. S.K. and F.P. performed the measurements with the help of S.F., O.K., P.R., A.V. and V.K. V.K. deposited the superconducting thin films with the help of A.K. and G.G. F.H. and M.M.K. prepared the nanotube suspensions. All authors analysed the data and contributed to writing the manuscript.

Corresponding authors

Correspondence to Carsten Rockstuhl, Ralph Krupke or Wolfram H. P. Pernice.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2106 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khasminskaya, S., Pyatkov, F., Słowik, K. et al. Fully integrated quantum photonic circuit with an electrically driven light source. Nature Photon 10, 727–732 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing