Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution

Abstract

Plasmonic nanoparticles provide the basis for a multitude of applications in chemistry, health care and optics because of their unique properties. Nanoparticle-based techniques have evolved into powerful tools for studying molecular interactions with single-molecule resolution. Here we show that this sensing capability can be used to detect single atomic ions in aqueous medium. We monitored interactions of single zinc and mercury ions with plasmonic gold nanorods (NRs) resonantly coupled to our whispering gallery mode sensor. Our system's ability to discern permanent binding and transient interaction allows us to study the different interaction kinetics of both ion species. The detection of transient interactions enables us to confirm statistically that the sensor signals originate from single ions. Furthermore, we reveal how the ion–NR interactions evolve with respect to the medium's ionic strength as mercury ions amalgamate with gold and zinc ions eventually turn into probes of highly localized surface potentials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental method and extraction of transient events.
Figure 2: Dependence of spike rates on the analyte-ion concentration, additional electrolyte concentration and the presence of EDTA.
Figure 3: Statistics of spike properties and theoretical detection probabilities for short interactions.
Figure 4: Ionic-strength dependence of the mercury ion–NR interaction.
Figure 5: Ionic-strength dependence of the zinc ion–NR interaction.
Figure 6: Model of three interaction regimes.

Similar content being viewed by others

References

  1. Jackson, J. B. & Halas, N. J. Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc. Natl Acad. Sci. USA 101, 17930–17935 (2004).

    Article  ADS  Google Scholar 

  2. Zamarion, V. M., Timm, R. A., Araki, K. & Toma, H. E. Ultrasensitive SERS nanoprobes for hazardous metal ions based on trimercaptotriazine-modified gold nanoparticles. Inorg. Chem. 47, 2934–2936 (2008).

    Article  Google Scholar 

  3. Sonnefraud, Y. et al. Experimental proof of concept of nanoparticle assisted STED. Nano Lett. 14, 4449–4453 (2014).

    Article  ADS  Google Scholar 

  4. Huang, X., El-Sayed, I. H., Qian, W. & El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006).

    Article  Google Scholar 

  5. El-Sayed, I. H., Huang, X. & El-Sayed, M. A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135 (2006).

    Article  Google Scholar 

  6. Han, G., Ghosh, P. & Rotello, V. M. Functionalized gold nanoparticles for drug delivery. Nanomedicine 2, 113–123 (2007).

    Article  Google Scholar 

  7. Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nat. Photon. 6, 737–748 (2012).

    Article  ADS  Google Scholar 

  8. Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2012).

    Article  ADS  Google Scholar 

  9. Wang, F. et al. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 135, 5588–5601 (2013).

    Article  Google Scholar 

  10. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241, 20–22 (1973).

    Article  ADS  Google Scholar 

  11. Ha, T. H., Koo, H.-J. & Chung, B. H. Shape controlled syntheses of gold nanoprism and nanorod influenced by specific adsorption of halide ions. J. Phys. Chem. C 111, 1123–1130 (2007).

    Article  Google Scholar 

  12. Busbee, B. D., Obare, S. O. & Murphy, C. J. An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater. 15, 414–416 (2003).

    Article  Google Scholar 

  13. Nikoobakht, B. & El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003).

    Article  Google Scholar 

  14. Kumar, P. S., Pastoriza-Santos, I., Rodriguez-Gonzalez, B., Javier Garcia de Abajo, F. & Liz-Marzan, L. M. High-yield synthesis and optical response of gold nanostars. Nanotechnology 19, 015606 (2008).

    Article  ADS  Google Scholar 

  15. Haes, A. J., Chang, L., Klein, W. L. & Van Duyne, R. P. Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc. 127, 2264–2271 (2005).

    Article  Google Scholar 

  16. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008).

    Article  ADS  Google Scholar 

  17. Ament, I., Prasad, J., Henkel, A., Schmachtel, S. & Sönnichsen, C. Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett. 12, 1092–1095 (2012).

    Article  ADS  Google Scholar 

  18. Zijlstra, P., Paulo, P. M. R. & Orrit, M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. 7, 379–382 (2012).

    Article  ADS  Google Scholar 

  19. Beuwer, M. A., Prins, M. W. J. & Zijlstra, P. Stochastic protein interactions monitored by hundreds of single-molecule plasmonic biosensors. Nano Lett. 15, 3507–3511 (2015).

    Article  ADS  Google Scholar 

  20. Baaske, M. D., Foreman, M. R. & Vollmer, F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol. 9, 933–939 (2014).

    Article  ADS  Google Scholar 

  21. Baaske, M. & Vollmer, F. Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform. ChemPhysChem 13, 427–436 (2012).

    Article  Google Scholar 

  22. Foreman, M., Swaim, J. & Vollmer, F. Whispering gallery mode sensors. Adv. Opt. Photon. 7, 168–168 (2015).

    Article  Google Scholar 

  23. Vollmer, F., Arnold, S. & Keng, D. Single virus detection from the reactive shift of a whispering-gallery mode. Proc. Natl Acad. Sci. USA 105, 20701–20704 (2008).

    Article  ADS  Google Scholar 

  24. He, L., Ozdemir, S. K., Zhu, J., Kim, W. & Yang, L. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol. 6, 428–432 (2011).

    Article  ADS  Google Scholar 

  25. Lu, T. et al. High sensitivity nanoparticle detection using optical microcavities. Proc. Natl Acad. Sci. USA 108, 5976–5979 (2011).

    Article  ADS  Google Scholar 

  26. Foreman, M. R., Jin, W.-L. & Vollmer, F. Optimizing detection limits in whispering gallery mode biosensing. Opt. Express 22, 5491–5511 (2014).

    Article  ADS  Google Scholar 

  27. Vollmer, F. et al. Protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 80, 4057–4059 (2002).

    Article  ADS  Google Scholar 

  28. Washburn, A. L., Gunn, L. C. & Bailey, R. C. Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators. Anal. Chem. 81, 9499–9506 (2009).

    Article  Google Scholar 

  29. Wu, Y., Zhang, D. Y., Yin, P. & Vollmer, F. Ultraspecific and highly sensitive nucleic acid detection by integrating a DNA catalytic network with a label-free microcavity. Small 10, 2067–2076 (2014).

    Article  Google Scholar 

  30. Hanumegowda, N. M., White, I. M. & Fan, X. Aqueous mercuric ion detection with microsphere optical ring resonator sensors. Sens. Actuat. B 120, 207–212 (2006).

    Article  Google Scholar 

  31. Panich, S. et al. Label-free Pb(II) whispering gallery mode sensing using self- assembled glutathione-modified gold nanoparticles on an optical microcavity. Anal. Chem. 86, 6299–6306 (2014).

    Article  Google Scholar 

  32. Kukanskis, K. et al. Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor. Anal. Biochem. 274, 7–17 (1999).

    Article  Google Scholar 

  33. Haynes, W. M. CRC Handbook of Chemistry and Physics, 96th edn (Taylor & Francis, 2015).

  34. Rex, M., Hernandez, F. E. & Campiglia, A. D. Pushing the limits of mercury sensors with gold nanorods. Anal. Chem. 78, 445–451 (2006).

    Article  Google Scholar 

  35. Lee, S. J., Piorek, B. D., Meinhart, C. D. & Moskovits, M. Photoreduction at a distance: facile, nonlocal photoreduction of Ag ions in solution by plasmon-mediated photoemitted electrons. Nano Lett. 10, 1329–1334 (2010).

    Article  ADS  Google Scholar 

  36. Duval, J. F. L., Huijs, G. K., Threels, W. F., Lyklema, J. & Van Leeuwen, H. P. Faradaic depolarization in the electrokinetics of the metal–electrolyte solution interface. J. Colloid Interface Sci. 260, 95–106 (2003).

    Article  ADS  Google Scholar 

  37. Barten, D. et al. Double layer of a gold electrode probed by AFM force measurements. Langmuir 19, 1133–1139 (2003).

    Article  Google Scholar 

  38. Pashley, R. M. & Israelachvili, J. N. A comparison of surface forces and interfacial properties of mica in purified surfactant solutions. Colloids Surf. 2, 169–187 (1981).

    Article  Google Scholar 

  39. Pashley, R. M., McGuiggan, P. M., Horn, R. G. & Ninham, B. W. Forces between bilayers of cetyltrimethylammonium bromide in micellar solutions. J. Colloid Interface Sci. 126, 569–578 (1988).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support for this work from the Max Planck Society. M.D.B. thanks M. R. Foreman and E. Kim for their feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.D.B. developed the experimental set-up, performed the experiments and data analysis, and wrote the manuscript. F.V. commented on the manuscript and supervised the project.

Corresponding authors

Correspondence to Martin D. Baaske or Frank Vollmer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 748 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baaske, M., Vollmer, F. Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution. Nature Photon 10, 733–739 (2016). https://doi.org/10.1038/nphoton.2016.177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing