Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sub-cycle optical phase control of nanotunnelling in the single-electron regime


The high peak electric fields provided by single-cycle light pulses can be harnessed to manipulate and control charge motion in solid-state systems, resulting in electron emission out of metals and semiconductors1,2,3,4,5,6 or high harmonics generation in dielectrics7,8. These processes are of a non-perturbative character and require precise reproducibility of the electric-field profile9,10,11,12,13,14. Here, we vary the carrier-envelope phase of 6-fs-long near-infrared pulses with pJ-level energy to control electronic transport in a laterally confined nanoantenna with an 8 nm gap. Peak current densities of 50 MA cm–2 are achieved, corresponding to the transfer of individual electrons in a half-cycle period of 2 fs. The observed behaviours are made possible by the strong distortion of the effective tunnelling barrier due to the extreme electric fields that the nanostructure provides and sustains under sub-cycle optical biasing. Operating at room temperature and in a standard atmosphere, the performed experiments demonstrate a robust class of nanoelectronic switches gated by phase-locked optical transients of minute energy content.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Carrier-envelope optical phase control of tunnelling currents in a nanodevice.
Figure 2: Characterization of phase-locked optical control transients.
Figure 3: Stationary characterization of the nanocircuit.
Figure 4: Carrier-envelope optical control of sub-cycle tunnelling in the nanoantenna.


  1. 1

    Herink, G., Solli, D. R., Gulde, M. & Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190–193 (2012).

    ADS  Article  Google Scholar 

  2. 2

    Schertz, F., Schmelzeisen, M., Kreiter, M., Elmers, H.-J. & Schönhense, G. Field emission of electrons generated by the near field of strongly coupled plasmons. Phys. Rev. Lett. 108, 237602 (2012).

    ADS  Article  Google Scholar 

  3. 3

    Swanwick, M. E. et al. Nanostructured ultrafast silicon-tip optical field-emitter arrays. Nano Lett. 14, 5035–5043 (2014).

    ADS  Article  Google Scholar 

  4. 4

    Wimmer, L. et al. Terahertz control of nanotip photoemission. Nat. Phys. 10, 432–436 (2014).

    Article  Google Scholar 

  5. 5

    Herink, G., Wimmer, L. & Ropers, C. Field emission at terahertz frequencies AC-tunneling and ultrafast carrier dynamics. New J. Phys. 16, 123005 (2014).

    ADS  Article  Google Scholar 

  6. 6

    Vogelsang, J. et al. Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons. Nano Lett. 15, 4685–4691 (2015).

    ADS  Article  Google Scholar 

  7. 7

    Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

    ADS  Article  Google Scholar 

  8. 8

    Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

    ADS  Article  Google Scholar 

  9. 9

    Lemell, C., Tong, X.-M., Krausz, F. & Burgdörfer, J. Electron emission from metal surfaces by ultrashort pulses determination of the carrier-envelope phase. Phys. Rev. Lett. 90, 076403 (2003).

    ADS  Article  Google Scholar 

  10. 10

    Dombi, P., Krausz, F. & Farkas, G. Ultrafast dynamics and carrier-envelope phase sensitivity of multiphoton photoemission from metal surfaces. J. Mod. Opt. 53, 163–172 (2006).

    ADS  Article  Google Scholar 

  11. 11

    Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

    Article  Google Scholar 

  12. 12

    Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2012).

    ADS  Article  Google Scholar 

  13. 13

    Piglosiewicz, B. et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat. Photon. 8, 37–42 (2013).

    ADS  Article  Google Scholar 

  14. 14

    Neppl, S. et al. Direct observation of electron propagation and dielectric screening on the atomic length scale. Nature 517, 342–346 (2015).

    ADS  Article  Google Scholar 

  15. 15

    Paasch-Colberg, T. et al. Solid-state light-phase detector. Nat. Photon. 8, 214–218 (2014).

    ADS  Article  Google Scholar 

  16. 16

    Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photon. 7, 620–625 (2013).

    ADS  Article  Google Scholar 

  17. 17

    Brida, D., Krauss, G., Sell, A. & Leitenstorfer, A. Ultrabroadband Er:fiber lasers. Laser Photon. Rev. 8, 409–428 (2014).

    ADS  Article  Google Scholar 

  18. 18

    Krauss, G. et al. Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nat. Photon. 4, 33–36 (2010).

    ADS  Article  Google Scholar 

  19. 19

    Birge, J. R., Ell, R. & Kärtner, F. X. Two-dimensional spectral shearing interferometry for few-cycle pulse characterization. Opt. Lett. 31, 2063–2065 (2006).

    ADS  Article  Google Scholar 

  20. 20

    Kakehata, M. et al. Single-shot measurement of carrier-envelope phase changes by spectral interferometry. Opt. Lett. 26, 1436–1438 (2001).

    ADS  Article  Google Scholar 

  21. 21

    Kern, J. et al. Electrically driven optical antennas. Nat. Photon. 9, 582–586 (2015).

    ADS  Article  Google Scholar 

  22. 22

    Mühlschlegel, P., Eisler, H.-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    ADS  Article  Google Scholar 

  23. 23

    Hohenester, U. & Trügler, A. MNPBEM—a Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 183, 370–381 (2012).

    ADS  Article  Google Scholar 

  24. 24

    Hanke, T. et al. Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. Nano Lett. 12, 992–996 (2012).

    ADS  Article  Google Scholar 

  25. 25

    Fowler, R. H. & Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. Lond. A 119, 173–181 (1928).

    ADS  Article  Google Scholar 

  26. 26

    Savage, K. et al. Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574–577 (2012).

    ADS  Article  Google Scholar 

  27. 27

    Esteban, R. et al. A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations. Faraday Discuss. 178, 151–183 (2015).

    ADS  Article  Google Scholar 

  28. 28

    Wan, Y., Wubs, M. & Mortensen, N. A. Projected dipole model for quantum plasmonics. Phys. Rev. Lett. 115, 137403 (2015).

    ADS  Article  Google Scholar 

  29. 29

    Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron–hole plasma. Nature 414, 286–289 (2001).

    ADS  Article  Google Scholar 

Download references


The authors acknowledge support from Deutsche Forschungsgemeinschaft through collaborative research centre SFB 767 and the Emmy Noether programme, from the European Research Council (Advanced Grant no. 290876), the Eliteprogramm of Baden-Württemberg Stiftung and the European Commission via the Marie Curie Carrier Integration Grant.

Author information




A.L. and D.B. conceived the ideas and supervised the work. T.R., M.L. and M.F.S. built the laser system and fabricated the nanocircuits. V.K. numerically modelled the nanoantennas. T.R. and M.L. performed the tunnelling measurements. T.R., D.B. and A.L. wrote the manuscript. All authors contributed to the scientific discussions.

Corresponding authors

Correspondence to Daniele Brida or Alfred Leitenstorfer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rybka, T., Ludwig, M., Schmalz, M. et al. Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nature Photon 10, 667–670 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing