Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sub-cycle optical phase control of nanotunnelling in the single-electron regime

Abstract

The high peak electric fields provided by single-cycle light pulses can be harnessed to manipulate and control charge motion in solid-state systems, resulting in electron emission out of metals and semiconductors1,2,3,4,5,6 or high harmonics generation in dielectrics7,8. These processes are of a non-perturbative character and require precise reproducibility of the electric-field profile9,10,11,12,13,14. Here, we vary the carrier-envelope phase of 6-fs-long near-infrared pulses with pJ-level energy to control electronic transport in a laterally confined nanoantenna with an 8 nm gap. Peak current densities of 50 MA cm–2 are achieved, corresponding to the transfer of individual electrons in a half-cycle period of 2 fs. The observed behaviours are made possible by the strong distortion of the effective tunnelling barrier due to the extreme electric fields that the nanostructure provides and sustains under sub-cycle optical biasing. Operating at room temperature and in a standard atmosphere, the performed experiments demonstrate a robust class of nanoelectronic switches gated by phase-locked optical transients of minute energy content.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Carrier-envelope optical phase control of tunnelling currents in a nanodevice.
Figure 2: Characterization of phase-locked optical control transients.
Figure 3: Stationary characterization of the nanocircuit.
Figure 4: Carrier-envelope optical control of sub-cycle tunnelling in the nanoantenna.

Similar content being viewed by others

References

  1. Herink, G., Solli, D. R., Gulde, M. & Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190–193 (2012).

    Article  ADS  Google Scholar 

  2. Schertz, F., Schmelzeisen, M., Kreiter, M., Elmers, H.-J. & Schönhense, G. Field emission of electrons generated by the near field of strongly coupled plasmons. Phys. Rev. Lett. 108, 237602 (2012).

    Article  ADS  Google Scholar 

  3. Swanwick, M. E. et al. Nanostructured ultrafast silicon-tip optical field-emitter arrays. Nano Lett. 14, 5035–5043 (2014).

    Article  ADS  Google Scholar 

  4. Wimmer, L. et al. Terahertz control of nanotip photoemission. Nat. Phys. 10, 432–436 (2014).

    Article  Google Scholar 

  5. Herink, G., Wimmer, L. & Ropers, C. Field emission at terahertz frequencies AC-tunneling and ultrafast carrier dynamics. New J. Phys. 16, 123005 (2014).

    Article  ADS  Google Scholar 

  6. Vogelsang, J. et al. Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons. Nano Lett. 15, 4685–4691 (2015).

    Article  ADS  Google Scholar 

  7. Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

    Article  ADS  Google Scholar 

  8. Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

    Article  ADS  Google Scholar 

  9. Lemell, C., Tong, X.-M., Krausz, F. & Burgdörfer, J. Electron emission from metal surfaces by ultrashort pulses determination of the carrier-envelope phase. Phys. Rev. Lett. 90, 076403 (2003).

    Article  ADS  Google Scholar 

  10. Dombi, P., Krausz, F. & Farkas, G. Ultrafast dynamics and carrier-envelope phase sensitivity of multiphoton photoemission from metal surfaces. J. Mod. Opt. 53, 163–172 (2006).

    Article  ADS  Google Scholar 

  11. Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

    Article  Google Scholar 

  12. Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2012).

    Article  ADS  Google Scholar 

  13. Piglosiewicz, B. et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat. Photon. 8, 37–42 (2013).

    Article  ADS  Google Scholar 

  14. Neppl, S. et al. Direct observation of electron propagation and dielectric screening on the atomic length scale. Nature 517, 342–346 (2015).

    Article  ADS  Google Scholar 

  15. Paasch-Colberg, T. et al. Solid-state light-phase detector. Nat. Photon. 8, 214–218 (2014).

    Article  ADS  Google Scholar 

  16. Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photon. 7, 620–625 (2013).

    Article  ADS  Google Scholar 

  17. Brida, D., Krauss, G., Sell, A. & Leitenstorfer, A. Ultrabroadband Er:fiber lasers. Laser Photon. Rev. 8, 409–428 (2014).

    Article  ADS  Google Scholar 

  18. Krauss, G. et al. Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nat. Photon. 4, 33–36 (2010).

    Article  ADS  Google Scholar 

  19. Birge, J. R., Ell, R. & Kärtner, F. X. Two-dimensional spectral shearing interferometry for few-cycle pulse characterization. Opt. Lett. 31, 2063–2065 (2006).

    Article  ADS  Google Scholar 

  20. Kakehata, M. et al. Single-shot measurement of carrier-envelope phase changes by spectral interferometry. Opt. Lett. 26, 1436–1438 (2001).

    Article  ADS  Google Scholar 

  21. Kern, J. et al. Electrically driven optical antennas. Nat. Photon. 9, 582–586 (2015).

    Article  ADS  Google Scholar 

  22. Mühlschlegel, P., Eisler, H.-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  ADS  Google Scholar 

  23. Hohenester, U. & Trügler, A. MNPBEM—a Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 183, 370–381 (2012).

    Article  ADS  Google Scholar 

  24. Hanke, T. et al. Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. Nano Lett. 12, 992–996 (2012).

    Article  ADS  Google Scholar 

  25. Fowler, R. H. & Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. Lond. A 119, 173–181 (1928).

    Article  ADS  Google Scholar 

  26. Savage, K. et al. Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574–577 (2012).

    Article  ADS  Google Scholar 

  27. Esteban, R. et al. A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations. Faraday Discuss. 178, 151–183 (2015).

    Article  ADS  Google Scholar 

  28. Wan, Y., Wubs, M. & Mortensen, N. A. Projected dipole model for quantum plasmonics. Phys. Rev. Lett. 115, 137403 (2015).

    Article  ADS  Google Scholar 

  29. Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron–hole plasma. Nature 414, 286–289 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from Deutsche Forschungsgemeinschaft through collaborative research centre SFB 767 and the Emmy Noether programme, from the European Research Council (Advanced Grant no. 290876), the Eliteprogramm of Baden-Württemberg Stiftung and the European Commission via the Marie Curie Carrier Integration Grant.

Author information

Authors and Affiliations

Authors

Contributions

A.L. and D.B. conceived the ideas and supervised the work. T.R., M.L. and M.F.S. built the laser system and fabricated the nanocircuits. V.K. numerically modelled the nanoantennas. T.R. and M.L. performed the tunnelling measurements. T.R., D.B. and A.L. wrote the manuscript. All authors contributed to the scientific discussions.

Corresponding authors

Correspondence to Daniele Brida or Alfred Leitenstorfer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybka, T., Ludwig, M., Schmalz, M. et al. Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nature Photon 10, 667–670 (2016). https://doi.org/10.1038/nphoton.2016.174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing