Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental realization of optomechanically induced non-reciprocity


Non-reciprocal devices, such as circulators and isolators, are indispensable components in classical and quantum information processing in integrated photonic circuits1. Aside from these applications, the non-reciprocal phase shift is of fundamental interest for exploring exotic topological photonics2, such as the realization of chiral edge states and topological protection3,4. However, incorporating low-optical-loss magnetic materials into a photonic chip is technically challenging5. In this study we experimentally demonstrate non-magnetic non-reciprocity using optomechanical interactions in a whispering gallery microresonator, as proposed in a previous work6. Optomechanically induced non-reciprocal transparency and amplification are observed and a non-reciprocal phase shift of up to 40° is also demonstrated. The underlying mechanism of optomechanically induced non-reciprocity has great potential for all-optical controllable isolators and circulators, as well as non-reciprocal phase shifters in integrated photonic chips.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of optomechanically induced non-reciprocity.
Figure 2: Optomechanically induced transparency (OMIT) and amplification (OMIA).
Figure 3: Optomechanically induced non-reciprocal transmission and phase shift.
Figure 4: Optical mode conversion between two oppositely propagating optical fields.


  1. Shoji, Y. & Mizumoto, T. Magneto-optical nonreciprocal devices in silicon photonics. Sci. Technol. Adv. Mater. 15, 014602 (2014).

    Article  Google Scholar 

  2. Lu, L., Joannopoulos, J. D. & Soljacic, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    Article  ADS  Google Scholar 

  3. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  ADS  Google Scholar 

  4. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

    Article  Google Scholar 

  5. Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photon. 5, 758–762 (2011).

    Article  ADS  Google Scholar 

  6. Hafezi, M. & Rabl, P. Optomechanically induced nonreciprocity in microring resonators. Opt. Express 20, 7672 (2012).

    Article  ADS  Google Scholar 

  7. Jalas, D. et al. What is—and what is not—an optical isolator. Nat. Photon. 7, 579–582 (2013).

    Article  ADS  Google Scholar 

  8. Post, E. J. Sagnac effect. Rev. Mod. Phys. 39, 475–493 (1967).

    Article  ADS  Google Scholar 

  9. Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alu, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).

    Article  ADS  Google Scholar 

  10. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009).

    Article  ADS  Google Scholar 

  11. Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

    Article  ADS  Google Scholar 

  12. Tzuang, L. D., Fang, K., Nussenzveig, P., Fan, S. & Lipson, M. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701–705 (2014).

    Article  ADS  Google Scholar 

  13. Kang, M. S., Butsch, A. & Russell, P. S. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photon. 5, 549–553 (2011).

    Article  ADS  Google Scholar 

  14. Dong, C.-H. et al. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun. 6, 6193 (2015).

    Article  ADS  Google Scholar 

  15. Kim, J., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015).

    Article  Google Scholar 

  16. Guo, X., Zou, C.-L., Jung, H. & Tang, H. X. Nonreciprocal nonlinear optic induced transparency and frequency conversion on a chip. Preprint at (2015).

  17. Shi, Y., Yu, Z. & Fan, S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photon. 9, 388–392 (2015).

    Article  ADS  Google Scholar 

  18. Gil-Santos, E. et al. High-frequency nano-optomechanical disk resonators in liquids. Nat. Nanotech. 10, 810–816 (2015).

    Article  ADS  Google Scholar 

  19. Fong, K. Y., Poot, M. & Tang, H. X. Nano-optomechanical resonators in microfluidics. Nano. Lett. 15, 6116–6120 (2015).

    Article  ADS  Google Scholar 

  20. Park, Y.-S. & Wang, H. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nat. Phys. 5, 489–493 (2009).

    Article  Google Scholar 

  21. Dong, C., Fiore, V., Kuzyk, M. C. & Wang, H. Optomechanical dark mode. Science 338, 1609–1613 (2012).

    Article  ADS  Google Scholar 

  22. Schliesser, A. & Kippenberg, T. J. Cavity Optomechanics Vol 24, Ch. 6, 121–148 (Springer, 2014).

    Book  Google Scholar 

  23. Ma, R. et al. Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres. Opt. Lett. 32, 2200 (2007).

    Article  ADS  Google Scholar 

  24. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520 (2010).

    Article  ADS  Google Scholar 

  25. Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011).

    Article  ADS  Google Scholar 

  26. Shen, Z. et al. Compensation of the Kerr effect for transient optomechanically induced transparency in a silica microsphere. Opt. Lett. 41, 1249 (2016).

    Article  ADS  Google Scholar 

  27. Dong, C., Zhang, J., Fiore, V. & Wang, H. Optomechanically induced transparency and self-induced oscillations with Bogoliubov mechanical modes. Optica 1, 425 (2014).

    Article  ADS  Google Scholar 

  28. Li, M., Pernice, W. H. P. & Tang, H. X. Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides. Phys. Rev. Lett. 103, 223901 (2009).

    Article  ADS  Google Scholar 

  29. Fu, W. et al. Integrated optical circulator by stimulated Brillouin scattering induced non-reciprocal phase shift. Opt. Express 23, 025118 (2015).

    Article  Google Scholar 

  30. Dong, C., Wang, Y. & Wang, H. Optomechanical interfaces for hybrid quantum networks. Natl Sci. Rev. 2, 510–519 (2015).

    Article  Google Scholar 

  31. Ruesink, F., Miri, M.-A., Alù, A. & Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Preprint at (2016).

Download references


The authors would like to thank H. Wang and X. Guo for discussions. The work was supported by the Ministry of Science and Technology of China (grant no. 2016YFA0301300), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (grant no. XDB01030200), the National Natural Science Foundation of China (grant no. 61308079, 61575184, 91536219 and 11474011), Anhui Provincial Natural Science Foundation (grant no. 1508085QA08) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations



C.-H.D. and C.-L.Z conceived the experiments, Z.S., C.-H.D. and Y.C. prepared microsphere, built the experimental set-up and carried out measurements. Y.-L.Z and Z.S. performed the numerical simulation and analysed the data, Y.-F.X., X.-B.Z. and F.-W.S. provided theoretical support. C.-H.D. and C.-L.Z. wrote the manuscript with input from all co-authors. C.-H.D., C.-L.Z. and G.-C.G. supervised the project. All authors contributed extensively to the work presented in this Letter.

Corresponding authors

Correspondence to Chang-Ling Zou or Chun-Hua Dong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3631 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Zhang, YL., Chen, Y. et al. Experimental realization of optomechanically induced non-reciprocity. Nature Photon 10, 657–661 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing