Optical modulators with 2D layered materials

Abstract

Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Electronic structure of different 2D layered materials.
Figure 2: Two-dimensional material-based all-optical modulators.
Figure 3: Two-dimensional materials and their heterostructure-based electro-optic modulators for silicon photonics.
Figure 4: Two-dimensional material-based electro-optic modulators at the terahertz, mid-infrared and microwave range.
Figure 5: Two-dimensional material-based thermo-optic and magneto-optic modulators.

References

  1. 1

    Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nature Photon. 4, 518–526 (2010).

    ADS  Article  Google Scholar 

  2. 2

    Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

    ADS  Google Scholar 

  3. 3

    Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    ADS  Article  Google Scholar 

  4. 4

    Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nature Photon. 8, 899–907 (2014).

    ADS  Google Scholar 

  5. 5

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    ADS  Google Scholar 

  6. 6

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    ADS  Article  Google Scholar 

  7. 7

    Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Commun. 5, 4458 (2014).

    ADS  Google Scholar 

  8. 8

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  9. 9

    Martinez, A. & Sun, Z. Nanotube and graphene saturable absorbers for fibre lasers. Nature Photon. 7, 842–845 (2013).

    ADS  Google Scholar 

  10. 10

    Luo, Z. et al. Two-dimensional materials saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers. Nanoscale 8, 1066–1072 (2016).

    ADS  Google Scholar 

  11. 11

    Martinez, A. & Yamashita, S. 10 GHz fundamental mode fiber laser using a graphene saturable absorber. Appl. Phys. Lett. 101, 041118 (2012).

    ADS  Google Scholar 

  12. 12

    Li, W. et al. Ultrafast all-optical graphene modulator. Nano Lett. 14, 955–959 (2014).

    ADS  Google Scholar 

  13. 13

    Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    ADS  Google Scholar 

  14. 14

    Gao, Y. et al. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Lett. 15, 2001–2005 (2015).

    ADS  Google Scholar 

  15. 15

    Phare, C. T., Daniel Lee, Y.-H., Cardenas, J. & Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nature Photon. 9, 511–514 (2015).

    ADS  Google Scholar 

  16. 16

    Schall, D. et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photon. 1, 781–784 (2014).

    Google Scholar 

  17. 17

    Polat, E. O. & Kocabas, C. Broadband optical modulators based on graphene supercapacitors. Nano Lett. 13, 5851–5857 (2013).

    ADS  Google Scholar 

  18. 18

    Lee, S. H. et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nature Mater. 11, 936–941 (2012).

    ADS  Google Scholar 

  19. 19

    Sensale-Rodriguez, B. et al. Broadband graphene terahertz modulators enabled by intraband transitions. Nature Commun. 3, 780 (2012).

    ADS  Google Scholar 

  20. 20

    Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

    ADS  Google Scholar 

  21. 21

    Balci, O., Polat, E. O., Kakenov, N. & Kocabas, C. Graphene-enabled electrically switchable radar-absorbing surfaces. Nature Commun. 6, 6628 (2015).

    ADS  Google Scholar 

  22. 22

    Sun, Z., Hasan, T. & Ferrari, A. C. Ultrafast lasers mode-locked by nanotubes and graphene. Physica E 44, 1082–1091 (2012).

    ADS  Google Scholar 

  23. 23

    Xu, B., Martinez, A. & Yamashita, S. Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion. IEEE Photon. Technol. 24, 1792–1794 (2012).

    ADS  Google Scholar 

  24. 24

    Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    ADS  Google Scholar 

  25. 25

    Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008).

    ADS  Google Scholar 

  26. 26

    Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nature Phys. 6, 30–33 (2010).

    ADS  Google Scholar 

  27. 27

    Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nature Mater. 6, 770–775 (2007).

    ADS  Google Scholar 

  28. 28

    Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    ADS  Google Scholar 

  29. 29

    Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

    ADS  Google Scholar 

  30. 30

    Horng, J. et al. Drude conductivity of Dirac fermions in graphene. Phys. Rev. B 83, 165113 (2011).

    ADS  Google Scholar 

  31. 31

    Ren, L. et al. Terahertz and infrared spectroscopy of gated large-area graphene. Nano Lett. 12, 3711–3715 (2012).

    ADS  Google Scholar 

  32. 32

    Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749–758 (2012).

    ADS  Google Scholar 

  33. 33

    Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013).

    ADS  Google Scholar 

  34. 34

    Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).

    ADS  Google Scholar 

  35. 35

    Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys. 10, 343–350 (2014).

    ADS  Google Scholar 

  36. 36

    Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nature Nanotech. 10, 534–540 (2015).

    ADS  Google Scholar 

  37. 37

    Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

    ADS  Google Scholar 

  38. 38

    Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nature Nanotech. 10, 517–521 (2015).

    ADS  Google Scholar 

  39. 39

    Yuan, H. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nature Nanotech. 10, 707–713 (2015).

    ADS  Google Scholar 

  40. 40

    Li, D. et al. Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation. Sci. Rep. 5, 15899 (2015).

    ADS  Google Scholar 

  41. 41

    Chen, X. et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nature Commun. 6, 7315 (2015).

    ADS  Google Scholar 

  42. 42

    Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nature Phys. 8, 382–386 (2012).

    ADS  Google Scholar 

  43. 43

    Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    ADS  Google Scholar 

  44. 44

    Dean, C. R. et al. Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    ADS  Google Scholar 

  45. 45

    Sup Choi, M. et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nature Commun. 4, 1624 (2013).

    ADS  Google Scholar 

  46. 46

    Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    ADS  Google Scholar 

  47. 47

    Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotech. 8, 952–958 (2013).

    ADS  Google Scholar 

  48. 48

    Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotech. 9, 682–686 (2014).

    ADS  Google Scholar 

  49. 49

    Rigosi, A. F., Hill, H. M., Li, Y., Chernikov, A. & Heinz, T. F. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2 . Nano Lett. 15, 5033–5038 (2015).

    ADS  Google Scholar 

  50. 50

    Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotech. 9, 676–681 (2014).

    ADS  Google Scholar 

  51. 51

    Hasan, T. et al. Nanotube-polymer composites for ultrafast photonics. Adv. Mater. 21, 3874–3899 (2009).

    Google Scholar 

  52. 52

    Bao, Q. et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077–3083 (2009).

    Google Scholar 

  53. 53

    Sun, Z. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2010).

    Google Scholar 

  54. 54

    Hendry, E., Hale, P. J., Moger, J., Savchenko, A. K. & Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010).

    ADS  Google Scholar 

  55. 55

    Wang, J., Hernandez, Y., Lotya, M., Coleman, J. N. & Blau, W. J. Broadband nonlinear optical response of graphene dispersions. Adv. Mater. 21, 2430–2435 (2009).

    Google Scholar 

  56. 56

    Bao, Q. et al. Broadband graphene polarizer. Nature Photon. 5, 411–415 (2011).

    ADS  Google Scholar 

  57. 57

    Bonaccorso, F. & Sun, Z. Solution processing of graphene, topological insulators and other 2D crystals for ultrafast photonics. Opt. Mater. Express 4, 63–78 (2014).

    ADS  Google Scholar 

  58. 58

    Zhang, H. et al. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 22, 7249–7260 (2014).

    ADS  Google Scholar 

  59. 59

    Sun, D. et al. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett. 101, 157402 (2008).

    ADS  Google Scholar 

  60. 60

    Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano 7, 791–797 (2012).

    Google Scholar 

  61. 61

    Tongay, S. et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2 . Nano Lett. 12, 5576–5580 (2012).

    ADS  Google Scholar 

  62. 62

    Woodward, R. I. et al. Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives. Photon. Res. 3, A30–A42 (2015).

    MathSciNet  Google Scholar 

  63. 63

    Chen, Y. et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express 23, 12823–12833 (2015).

    ADS  Google Scholar 

  64. 64

    Yin, X. et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science 344, 488–490 (2014).

    ADS  Google Scholar 

  65. 65

    Lee, C. C. et al. Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator. Opt. Lett. 37, 3084–3086 (2012).

    ADS  Google Scholar 

  66. 66

    Baylam, I. et al. Femtosecond pulse generation with voltage-controlled graphene saturable absorber. Opt. Lett. 39, 5180–5183 (2014).

    ADS  Google Scholar 

  67. 67

    Weis, P. et al. Spectrally wide-band terahertz wave modulator based on optically tuned graphene. ACS Nano 6, 9118–9124 (2012).

    Google Scholar 

  68. 68

    Hong, S.-Y. et al. Optical third-harmonic generation in graphene. Phys. Rev. X 3, 021014 (2013).

    Google Scholar 

  69. 69

    Lee, C. C., Miller, J. & Schibli, T. Doping-induced changes in the saturable absorption of monolayer graphene. Appl. Phys. B 108, 129–135 (2012).

    ADS  Google Scholar 

  70. 70

    Zaugg, C. A. et al. Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector. Opt. Express 21, 31548–31559 (2013).

    ADS  Google Scholar 

  71. 71

    Rao, S. M., Heitz, J. J. F., Roger, T., Westerberg, N. & Faccio, D. Coherent control of light interaction with graphene. Opt. Lett. 39, 5345–5347 (2014).

    ADS  Google Scholar 

  72. 72

    Gu, T. et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photon. 6, 554–559 (2012).

    ADS  Google Scholar 

  73. 73

    Zhou, H. et al. Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides. Appl. Phys. Lett. 105, 091111 (2014).

    ADS  Google Scholar 

  74. 74

    Dean, J. J. & van Driel, H. M. Graphene and few-layer graphite probed by second-harmonic generation: theory and experiment. Phys. Rev. B 82, 125411 (2010).

    ADS  Google Scholar 

  75. 75

    Malard, L., Alencar, T., Barboza, A. P. M., Mak, K. F. & de Paula, A. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 87, 201401 (2013).

    ADS  Google Scholar 

  76. 76

    Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013).

    ADS  Google Scholar 

  77. 77

    Zeng, H. et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608 (2013).

    Google Scholar 

  78. 78

    Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nature Nanotech. 10, 407–411 (2015).

    ADS  Google Scholar 

  79. 79

    Gullans, M., Chang, D. E., Koppens, F. H. L., de Abajo, F. J. G. & Lukin, M. D. Single-photon nonlinear optics with graphene plasmons. Phys. Rev. Lett. 111, 247401 (2013).

    ADS  Google Scholar 

  80. 80

    Xu, F. et al. Complex refractive index tunability of graphene at 1550 nm wavelength. Appl. Phys. Lett. 106, 031109 (2015).

    ADS  Google Scholar 

  81. 81

    Mohsin, M. et al. Experimental verification of electro-refractive phase modulation in graphene. Sci. Rep. 5, 10967 (2015).

    ADS  Google Scholar 

  82. 82

    Liu, M., Yin, X. & Zhang, X. Double-layer graphene optical modulator. Nano Lett. 12, 1482–1485 (2012).

    ADS  Google Scholar 

  83. 83

    Lee, E. J. et al. Active control of all-fibre graphene devices with electrical gating. Nature Commun. 6, 6851 (2015).

    ADS  Google Scholar 

  84. 84

    Lee, C. C., Suzuki, S., Xie, W. & Schibli, T. R. Broadband graphene electro-optic modulators with sub-wavelength thickness. Opt. Express 20, 5264–5269 (2012).

    ADS  Google Scholar 

  85. 85

    Maeng, I. et al. Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy. Nano Lett. 12, 551–555 (2012).

    ADS  Google Scholar 

  86. 86

    Sensale-Rodriguez, B. et al. Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators. Nano Lett. 12, 4518–4522 (2012).

    ADS  Google Scholar 

  87. 87

    Sensale-Rodriguez, B. et al. Terahertz imaging employing graphene modulator arrays. Opt. Express 21, 2324–2330 (2013).

    ADS  Google Scholar 

  88. 88

    Liang, G. et al. Integrated terahertz graphene modulator with 100% modulation depth. ACS Photon. 2, 1559–1566 (2015).

    Google Scholar 

  89. 89

    Gosciniak, J. & Tan, D. T. H. Theoretical investigation of graphene-based photonic modulators. Sci. Rep. 3, 1897 (2013).

    ADS  Google Scholar 

  90. 90

    Thongrattanasiri, S., Koppens, F. H. L. & García de Abajo, F. J. Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012).

    ADS  Google Scholar 

  91. 91

    Gan, X. et al. High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Lett. 13, 691–696 (2013).

    ADS  Google Scholar 

  92. 92

    Mohsin, M. et al. Graphene based low insertion loss electro-absorption modulator on SOI waveguide. Opt. Express 22, 15292–15297 (2014).

    ADS  Google Scholar 

  93. 93

    Youngblood, N., Anugrah, Y., Ma, R., Koester, S. J. & Li, M. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett. 14, 2741–2746 (2014).

    ADS  Google Scholar 

  94. 94

    Qiu, C. et al. Efficient modulation of 1.55 μm radiation with gated graphene on a silicon micro-ring resonator. Nano Lett. 14, 6811–6815 (2014).

    ADS  Google Scholar 

  95. 95

    Ding, Y. et al. Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator. Nano Lett. 15, 4393–4400 (2015).

    ADS  Google Scholar 

  96. 96

    Sensale-Rodriguez, B. et al. Efficient terahertz electro-absorption modulation employing graphene plasmonic structures. Appl. Phys. Lett. 101, 261115 (2012).

    ADS  Google Scholar 

  97. 97

    Fang, Z. et al. Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7, 2388–2395 (2013).

    Google Scholar 

  98. 98

    Yan, H. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech. 7, 330–334 (2012).

    ADS  Google Scholar 

  99. 99

    Kim, J. et al. Electrical control of optical plasmon resonance with graphene. Nano Lett. 12, 5598–5602 (2012).

    ADS  Google Scholar 

  100. 100

    Emani, N. K. et al. Electrically tunable damping of plasmonic resonances with graphene. Nano Lett. 12, 5202–5206 (2012).

    ADS  Google Scholar 

  101. 101

    Ansell, D. et al. Hybrid graphene plasmonic waveguide modulators. Nature Commun. 6, 8846 (2015).

    ADS  Google Scholar 

  102. 102

    Papasimakis, N. et al. Graphene in a photonic metamaterial. Opt. Express 18, 8353–8359 (2010).

    ADS  Google Scholar 

  103. 103

    Yao, Y. et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett. 14, 6526–6532 (2014).

    ADS  Google Scholar 

  104. 104

    Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    ADS  Google Scholar 

  105. 105

    Brar, V. W. et al. Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. Nano Lett. 14, 3876–3880 (2014).

    ADS  Google Scholar 

  106. 106

    Kim, J. T., Chung, K. H. & Choi, C.-G. Thermo-optic mode extinction modulator based on graphene plasmonic waveguide. Opt. Express 21, 15280–15286 (2013).

    ADS  Google Scholar 

  107. 107

    Gan, S. et al. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale 7, 20249–20255 (2015).

    ADS  Google Scholar 

  108. 108

    Yu, L., Dai, D. & He, S. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Appl. Phys. Lett. 105, 251104 (2014).

    ADS  Google Scholar 

  109. 109

    Gan, X. et al. Graphene-assisted all-fiber phase shifter and switching. Optica 2, 468–471 (2015).

    ADS  Google Scholar 

  110. 110

    Shimano, R. et al. Quantum Faraday and Kerr rotations in graphene. Nature Commun. 4, 1841 (2013).

    ADS  Google Scholar 

  111. 111

    Crassee, I. et al. Giant Faraday rotation in single- and multilayer graphene. Nature Phys. 7, 48–51 (2011).

    ADS  Google Scholar 

  112. 112

    Sounas, D. L. et al. Faraday rotation in magnetically biased graphene at microwave frequencies. Appl. Phys. Lett. 102, 191901 (2013).

    ADS  Google Scholar 

  113. 113

    Crassee, I. et al. Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene. Nano Lett. 12, 2470–2474 (2012).

    ADS  Google Scholar 

  114. 114

    Yan, H. et al. Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. Nano Lett. 12, 3766–3771 (2012).

    ADS  Google Scholar 

  115. 115

    Zanotto, S. et al. Magneto-optic transmittance modulation observed in a hybrid graphene-split ring resonator terahertz metasurface. Appl. Phys. Lett. 107, 121104 (2015).

    ADS  Google Scholar 

  116. 116

    Thalmeier, P., Dóra, B. & Ziegler, K. Surface acoustic wave propagation in graphene. Phys. Rev. B 81, 041409 (2010).

    ADS  Google Scholar 

  117. 117

    Preciado, E. et al. Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3 . Nature Commun. 6, 8593 (2015).

    ADS  Google Scholar 

  118. 118

    Farhat, M., Guenneau, S. & Bağcı, H. Exciting graphene surface plasmon polaritons through light and sound interplay. Phys. Rev. Lett. 111, 237404 (2013).

    ADS  Google Scholar 

  119. 119

    Singh, V. et al. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nature Nanotech. 9, 820–824 (2014).

    ADS  Google Scholar 

  120. 120

    Miller, D. A. B. Energy consumption in optical modulators for interconnects. Opt. Express 20, A293–A308 (2012).

    ADS  Google Scholar 

Download references

Acknowledgements

Z.S. acknowledges funding from the European Union's Seventh Framework Programme (REA grant agreement No. 631610), the Academy of Finland (No.:276376, 284548), TEKES (OPEC), Teknologiateollisuus TT-100, Nokia foundation and Aalto University. A.M. acknowledges support from the H2020 Marie-Sklodowska-Curie Individual Fellowship scheme. F.W. acknowledges funding from the United States National Science Foundation (EFMA-1542741).

Author information

Affiliations

Authors

Contributions

Z.S. led the project. All authors made significant contributions to the preparation of this manuscript.

Corresponding authors

Correspondence to Zhipei Sun or Amos Martinez or Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 346 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nature Photon 10, 227–238 (2016). https://doi.org/10.1038/nphoton.2016.15

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing