Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si

Abstract

Silicon photonics would greatly benefit from efficient, visible on-chip light sources that are electrically driven at room temperature1,2. To fully utilize the benefits of large-scale, low-cost manufacturing foundries, it is highly desirable to grow direct bandgap III-V semiconductor lasers directly on Si3,4,5. Here, we report the demonstration of a blue–violet (413 nm) InGaN-based laser diode grown directly on Si that operates under continuous-wave current injection at room temperature, with a threshold current density of 4.7 kA cm–2. The heteroepitaxial growth of GaN on Si is confronted with a large mismatch in both the lattice constant and the coefficient of thermal expansion, often resulting in a high density of defects and even microcrack networks. By inserting an Al-composition step-graded AlN/AlGaN multilayer buffer between the Si and GaN, we have not only successfully eliminated crack formation, but also effectively reduced the dislocation density. The result is the realization of a blue–violet InGaN-based laser on Si.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic architecture of InGaN-based LD directly grown on Si.
Figure 2: Cross-sectional TEM images of an InGaN-based LD directly grown on Si.
Figure 3: Microstructure, crystalline quality, defect analysis, and surface morphology.
Figure 4: Characteristics of an InGaN-based LD grown on Si.

References

  1. 1

    Goodman, J. W., Leonberger, F. J., Sun-Yuan, K. & Athale, R. A. Optical interconnections for VLSI systems. Proc. IEEE 72, 850–866 (1984).

    ADS  Article  Google Scholar 

  2. 2

    Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Elect. 12, 1678–1687 (2006).

    ADS  Article  Google Scholar 

  3. 3

    Chen, R. et al. Nanolasers grown on silicon. Nature Photon. 5, 170–175 (2011).

    ADS  Article  Google Scholar 

  4. 4

    Wang, Z. et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nature Photon. 9, 837–842 (2015).

    ADS  Article  Google Scholar 

  5. 5

    Chen, S. et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nature Photon. 10, 307–311 (2016).

    ADS  Article  Google Scholar 

  6. 6

    Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).

    ADS  Article  Google Scholar 

  7. 7

    Rong, H. S. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

    ADS  Article  Google Scholar 

  8. 8

    Wirths, S. et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nature Photon. 9, 88–92 (2015).

    ADS  Article  Google Scholar 

  9. 9

    Liang, D. & Bowers, J. E. Recent progress in lasers on silicon. Nature Photon. 4, 511–517 (2010).

    ADS  Article  Google Scholar 

  10. 10

    Justice, J. et al. Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers. Nature Photon. 6, 612–616 (2012).

    ADS  Article  Google Scholar 

  11. 11

    Nakamura, S. et al. Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates. Appl. Phys. Lett. 72, 2014–2016 (1998).

    ADS  Article  Google Scholar 

  12. 12

    Bidnyk, S. et al. Laser action in GaN pyramids grown on (111) silicon by selective lateral overgrowth. Appl. Phys. Lett. 73, 2242–2244 (1998).

    ADS  Article  Google Scholar 

  13. 13

    Lutsenko, E. V. et al. Growth, stimulated emission, photo- and electroluminescence of InGaN/GaN EL-test heterostructures. Phys. Status Solidi C 0, 272–275 (2002).

    Article  Google Scholar 

  14. 14

    Shuhaimi, B. A. B. A., Kawato, H., Zhu, Y. & Egawa, T. Growth of InGaN-based laser diode structure on silicon (111) substrate. J. Phys. Conf. Ser. 152, 012007 (2009).

    Article  Google Scholar 

  15. 15

    Kushimoto, M., Tanikawa, T., Honda, Y. & Amano, H. Optically pumped lasing properties of ( ) InGaN/GaN stripe multiquantum wells with ridge cavity structure on patterned (001) Si substrates. Appl. Phys. Express 8, 022702 (2015).

    ADS  Article  Google Scholar 

  16. 16

    Cherns, D., Henley, S. J. & Ponce, F. A. Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence. Appl. Phys. Lett. 78, 2691–2693 (2001).

    ADS  Article  Google Scholar 

  17. 17

    Cheng, K. et al. Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers. J. Electron. Mater. 35, 592–598 (2006).

    ADS  Article  Google Scholar 

  18. 18

    Leung, B., Han, J. & Sun, Q. Strain relaxation and dislocation reduction in AlGaN step-graded buffer for crack-free GaN on Si(111). Phys. Status Solidi C 11, 437–441 (2014).

    ADS  Article  Google Scholar 

  19. 19

    Romanov, A. E. & Speck, J. S. Stress relaxation in mismatched layers due to threading dislocation inclination. Appl. Phys. Lett. 83, 2569–2571 (2003).

    ADS  Article  Google Scholar 

  20. 20

    Follstaedt, D. M., Lee, S. R., Allerman, A. A. & Floro, J. A. Strain relaxation in AlGaN multilayer structures by inclined dislocations. J. Appl. Phys. 105, 083507 (2009).

    ADS  Article  Google Scholar 

  21. 21

    Heying, B. et al. Role of threading dislocation structure on the X-ray diffraction peak widths in epitaxial GaN films. Appl. Phys. Lett. 68, 643–645 (1996).

    ADS  Article  Google Scholar 

  22. 22

    Chierchia, R. et al. Microstructure of heteroepitaxial GaN revealed by X-ray diffraction. J. Appl. Phys. 93, 8918–8925 (2003).

    ADS  Article  Google Scholar 

  23. 23

    Sun, Q. et al. GaN-on-Si blue/white LEDs: epitaxy, chip, and package. J. Semicond. 37, 044006 (2016).

    Article  Google Scholar 

  24. 24

    Zhu, D. et al. Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates. J. Appl. Phys. 109, 014502 (2011).

    ADS  Article  Google Scholar 

  25. 25

    Tomiya, S., Hino, T., Goto, S., Takeya, M. & Ikeda, M. Dislocation related issues in the degradation of GaN-based laser diodes. IEEE J. Sel. Top. Quantum Elect. 10, 1277–1286 (2004).

    ADS  Article  Google Scholar 

  26. 26

    Nakamura, S. et al. Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes. Appl. Phys. Lett. 69, 4056–4058 (1996).

    ADS  Article  Google Scholar 

  27. 27

    Nakamura, S. et al. High-power, long-lifetime InGaN multi-quantum-well-structure laser diodes. Jpn. J. Appl. Phys. 36, L1059–L1061 (1997).

    Article  Google Scholar 

  28. 28

    Nam, O. H. et al. Characteristics of GaN-based laser diodes for post-DVD applications. Phys. Status Solidi A 201, 2717–2720 (2004).

    ADS  Google Scholar 

  29. 29

    Marona, L. et al. Degradation mechanisms in InGaN laser diodes grown on bulk GaN crystals. Appl. Phys. Lett. 88, 201111 (2006).

    ADS  Article  Google Scholar 

  30. 30

    Nakamura, S. The roles of structural imperfections in InGaN-Based blue light-emitting diodes and laser diodes. Science 281, 956–961 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Key Research and Development Program (Grant No. 2016YFB0400104), the National Natural Science Foundation of China (Grant Nos. 61534007, 61404156, 61522407 and U1501241), the Strategic Priority Research Program of the Chinese Academy of Science (Grant No. XDA09020401), the Natural Science Foundation of Jiangsu Province (Grant No. BK20160401), the China Postdoctoral Science Foundation (Grant No. 2016M591944) and the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (Grant No. 2013T2J0048). This work was also supported by the open fund of the State Key Laboratory of Luminescence and Applications (Grant No. SKLA-2016-01) and the seed fund from SINANO, CAS (Grant No. Y5AAQ51001). We are thankful for the technical support from Nano Fabrication Facility, Platform for Characterization & Test, Nano-X of SINANO, CAS, M. Niu's assistance in TEM imaging and J. Han's help in proofreading.

Author information

Affiliations

Authors

Contributions

Q.S., H.Y. and S.L. proposed and coordinated the overall project. Q.S., M.I., J.L. and S.Z. proposed the epitaxial structure. K.Z., J.L. and M.F. performed the simulation. Q.S. and Z.L. grew the GaN-on-Si template, K.Z., Y.S., Q.S., J.L., M.F. and M.I. carried out the LD epitaxial growth. Y.S., M.F., Y.Z., L.Z. and S.Z. fabricated the GaN-on-Si LD devices. Y.S., K.Z., Y.Z., Z.L. and D.L. measured the GaN-on-Si LD devices. Y.S., Q.S. and H.Y. composed and revised the manuscript. S.L. and M.I. proofread the manuscript.

Corresponding author

Correspondence to Qian Sun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 710 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhou, K., Sun, Q. et al. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si. Nature Photon 10, 595–599 (2016). https://doi.org/10.1038/nphoton.2016.158

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing