Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reversible optical switching of antiferromagnetism in TbMnO3

Abstract

Lasers can be used to control the magnetization of a ferromagnet via optically driven thermal and electronic excitation1,2,3,4,5. Transfer of this concept to antiferromagnets is appealing because of the increasing technological interest in antiferromagnetism6. Controlling spin structures in antiferromagnets is challenging, however, because of their zero magnetization. In a proof-of-principle experiment we demonstrate that optical control of antiferromagnetic domains is nevertheless possible. We reverse the antiferromagnetic order parameter in multiferroic TbMnO3 repeatedly, using light pulses of two different colours. Switching depends on a unique relation between the wavelength of the light, its optical absorption and the electric polarization field induced by the antiferromagnetic order of TbMnO3. We then demonstrate sequential laser-controlled writing and erasure of antiferromagnetic domains. The universality of reversible optical antiferromagnetic switching is derived by Monte Carlo simulations. Opto-magnetism is thus complemented by an important degree of freedom, namely local control of antiferromagnetism by means of light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical reversal of an antiferromagnetic domain state.
Figure 2: Reversible optical switching of an antiferromagnetic state.
Figure 3: Monte Carlo simulation of reversible two-colour switching.
Figure 4: Sequential optical writing and erasure of an antiferromagnetic domain pattern.

Similar content being viewed by others

References

  1. Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    Article  ADS  Google Scholar 

  2. Vahaplar, K. et al. Ultrafast path for optical magnetization reversal via a strongly nonequilibrium state. Phys. Rev. Lett. 103, 117201 (2009).

    Article  ADS  Google Scholar 

  3. Khorsand, A. R. et al. Role of magnetic circular dichroism in all-optical magnetic recording. Phys. Rev. Lett. 108, 127205 (2012).

    Article  ADS  Google Scholar 

  4. Ostler, T. A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnets. Nature Commun. 3, 666 (2012).

    Article  ADS  Google Scholar 

  5. Lambert, C.-H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

    Article  ADS  Google Scholar 

  6. Loth, S., Baumann, S., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Bistability in atomic-scale antiferromagnets. Science 335, 196–199 (2012).

    Article  ADS  Google Scholar 

  7. Jungwirth, T., Martí, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nature Nanotech. 11, 231–241 (2016).

    Article  ADS  Google Scholar 

  8. Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article  ADS  Google Scholar 

  9. Duong, N. P., Satoh, T. & Fiebig, M. Ultrafast manipulation of antiferromagnetism of NiO. Phys. Rev. Lett. 93, 117402 (2004).

    Article  ADS  Google Scholar 

  10. Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, Th. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3 . Nature 429, 850–853 (2004).

    Article  ADS  Google Scholar 

  11. Kimel, A. V. et al. Inertia-driven spin switching in antiferromagnets. Nature Phys. 5, 727–731 (2009).

    Article  ADS  Google Scholar 

  12. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    Article  ADS  Google Scholar 

  13. Kenzelmann, M. et al. Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3 . Phys. Rev. Lett. 95, 087206 (2005).

    Article  ADS  Google Scholar 

  14. Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).

    Article  ADS  Google Scholar 

  15. Mostovoy, M. Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96, 067601 (2006).

    Article  ADS  Google Scholar 

  16. Yamasaki, Y. et al. Electric control of spin helicity in a magnetic ferroelectric. Phys. Rev. Lett. 98, 147204 (2007).

    Article  ADS  Google Scholar 

  17. Fiebig, M., Pavlov, V. V. & Pisarev, R. V. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J. Opt. Soc. Am. B 22, 96–118 (2005).

    Article  ADS  Google Scholar 

  18. Matsubara, M. et al. Magnetoelectric domain control in multiferroic TbMnO3 . Science 348, 1112–1115 (2015).

    Article  ADS  Google Scholar 

  19. Hadni, A. & Thomas, R. Localized irreversible thermal switching in ferroelectric TGS by an argon laser. Ferroelectrics 6, 241–245 (1974).

    Article  Google Scholar 

  20. Muir, A. C. et al. Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser. Opt. Express 16, 2336–2350 (2008).

    Article  ADS  Google Scholar 

  21. Kim, M. W. et al. Effect of orbital rotation and mixing on the optical properties of orthorhombic RMnO3 (R = La, Pr, Nd, Gd, and Tb). Phys. Rev. Lett. 96, 247205 (2006).

    Article  ADS  Google Scholar 

  22. Challener, W. A. et al. Light delivery techniques for heat-assisted magnetic recording. Jpn. J. Appl. Phys. 42, 981–988 (2003).

    Article  ADS  Google Scholar 

  23. Kimura, T., Sekio, Y. Nakamura, H., Siegrist, T. & Ramirez, A. P. Cupric oxide as an induced-multiferroic with high-TC . Nature Mater. 7, 291–294 (2008).

    Article  ADS  Google Scholar 

  24. Kitagawa, Y. et al. Low-field magnetoelectric effect at room temperature. Nature Mater. 9, 797–802 (2010).

    Article  ADS  Google Scholar 

  25. Mathur, N. D. et al. Large low-field magnetoresistance in La0.7Ca0.3MnO3 induced by artificial grain boundaries. Nature 387, 266–268 (1997).

    Article  ADS  Google Scholar 

  26. Becher, C. et al. Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films. Nature Nanotech. 10, 661–665 (2015).

    Article  ADS  Google Scholar 

  27. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229–234 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Becher for technical advice and M. Trassin for discussions. The work at ETH was supported by funding through the Swiss National Science Foundation (grants nos. 200021_147080/1 and 200021_144115). T.K. was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (grant no. 24244058).

Author information

Authors and Affiliations

Authors

Contributions

S.M. designed and conducted the experiments, assisted by J.B. M.M. performed the initial investigation and discovered the optically induced order parameter reversal, based on which S.M. and D.M. devised the concept of reversible optical switching. T.L. performed the Monte Carlo simulations. A.I. and T.K. provided the samples. All authors discussed the results. The manuscript was written by S.M., D.M., M.M. and M.F. The work was supervised by D.M., M.M. and M.F.

Corresponding author

Correspondence to Sebastian Manz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 873 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manz, S., Matsubara, M., Lottermoser, T. et al. Reversible optical switching of antiferromagnetism in TbMnO3. Nature Photon 10, 653–656 (2016). https://doi.org/10.1038/nphoton.2016.146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing