Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator

An Erratum to this article was published on 29 September 2016

This article has been updated


Ferroelectric absorbers, which promote carrier separation and exhibit above-gap photovoltages, are attractive candidates for constructing efficient solar cells. Using the ferroelectric insulator BaTiO3 we show how photogeneration and the collection of hot, non-equilibrium electrons through the bulk photovoltaic effect (BPVE) yields a greater-than-unity quantum efficiency. Despite absorbing less than a tenth of the solar spectrum, the power conversion efficiency of the BPVE device under 1 sun illumination exceeds the Shockley–Queisser limit for a material of this bandgap. We present data for devices that feature a single-tip electrode contact and an array with 24 tips (total planar area of 1 × 1 μm2) capable of generating a current density of 17 mA cm–2 under illumination of AM1.5 G. In summary, the BPVE at the nanoscale provides an exciting new route for obtaining high-efficiency photovoltaic solar energy conversion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic illustrations of the photoexcitation processes.
Figure 2: Bulk photovoltaic response at the nanoscale in bulk single-domain ferroelectric BTO.
Figure 3: Quantum efficiency, photocurrent spectrum and power conversion efficiency in bulk single-domain ferroelectric BTO at the nanoscale.
Figure 4: Photovoltaic device consisting of an array of nanoscale tips.

Change history

  • 31 August 2016

    In the version of this Article originally published, in Fig. 3a, the units on the left-hand y axis were incorrect; they should have read '(A cm–2)'. This has now been corrected in the online versions of the Article.


  1. 1

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    ADS  Article  Google Scholar 

  2. 2

    O'Regan, B. & Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized TiO2 films. Nature 335, 737–740 (1991).

    ADS  Article  Google Scholar 

  3. 3

    Grekov, A. A., Malitskaya, M. A., Spitsina, V. D. & Fridkin, V. M. Photoelectric effects in A5B6C7-type ferroelectrics-semiconductors with low-temperature phase transitions. Kristallografiya 15, 500–509 (1970).

    Google Scholar 

  4. 4

    Glass, A. M., von der Linde, D. & Negran, T. J. High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 . Appl. Phys. Lett. 25, 233–235 (1974).

    ADS  Article  Google Scholar 

  5. 5

    Sturman, B. & Fridkin, V. The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach, 1992).

    Google Scholar 

  6. 6

    Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nature Nanotech. 5, 143–147 (2010).

    ADS  Article  Google Scholar 

  7. 7

    Seidel, J. et al. Efficient photovoltaic current generation at ferroelectric domain walls. Phys. Rev. Lett. 107, 126805 (2011).

    ADS  Article  Google Scholar 

  8. 8

    Alexe, M. & Hesse, D. Tip-enhanced photovoltaic effects in bismuth ferrite. Nature Commun. 2, 256 (2011).

    ADS  Article  Google Scholar 

  9. 9

    Nechache, R. et al. Photovoltaic properties of Bi2FeCrO6 epitaxial thin films. Appl. Phys. Lett. 98, 202902 (2011).

    ADS  Article  Google Scholar 

  10. 10

    Young, S. M. & Rappe, A. M. First principles calculation of the shift current photovoltaic effect in ferroelectrics. Phys. Rev. Lett. 109, 116601 (2012).

    ADS  Article  Google Scholar 

  11. 11

    Young, S. M., Zheng, F. & Rappe, A. M., First-principles calculation of the bulk photovoltaic effect in bismuth ferrite. Phys. Rev. Lett. 109, 236601 (2012).

    ADS  Article  Google Scholar 

  12. 12

    Kreisel, J., Alexe, M. & Thomas, P. A. A photoferroelectric material is more than the sum of its parts. Nature Mater. 11, 260 (2012).

    ADS  Article  Google Scholar 

  13. 13

    Daranciang, D. et al. Ultrafast photovoltaic response in ferroelectric nanolayers. Phys. Rev. Lett. 108, 087601 (2012).

    ADS  Article  Google Scholar 

  14. 14

    Yang, B. et al. Tuning the energy level offset between donor and acceptor with ferroelectric dipole layers for increased efficiency in bilayer organic photovoltaic cells. Adv. Mater. 24, 1455–1460 (2012).

    Article  Google Scholar 

  15. 15

    Grinberg, I. et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013).

    ADS  Article  Google Scholar 

  16. 16

    Fridkin, V. Parity nonconservation and bulk photovoltaic effect in a crystal without symmetry center. IEEE Trans. Ultrason. Ferroelect. Freq. Control 60, 1551–1555 (2013).

    Article  Google Scholar 

  17. 17

    Bhatnagar, A., Roy Chaudhuri, A., Heon Kim, Y., Hesse, D. & Alexe, M. Role of domain walls in the abnormal photovoltaic effect in BiFeO3 . Nature Commun. 4, 2835 (2013).

    ADS  Article  Google Scholar 

  18. 18

    Xiao, Z. et al. Ferroelectric materials: synthesis and application of ferroelectric P(VDF-TrFE) nanoparticles in organic photovoltaic devices for high efficiency. Adv. Energy Mater. 3, 1581–1588 (2013).

    Article  Google Scholar 

  19. 19

    Nechache, R. et al. Bandgap tuning of multiferroic oxide solar cells. Nature Photon. 9, 61–67 (2015).

    ADS  Article  Google Scholar 

  20. 20

    Zenkevich, A. et al. Giant bulk photovoltaic effect in thin ferroelectric BaTiO3 films. Phys. Rev. B 90, 161409 (2014).

    ADS  Article  Google Scholar 

  21. 21

    Yuan, Y., Xiao, Z., Yang, B. & Huang, J. Arising applications of ferroelectric materials in photovoltaic devices. J. Mater. Chem. A 2, 6027–6041 (2014).

    Article  Google Scholar 

  22. 22

    Chakrabartty, J. P., Nechache, R., Harnagea, C. & Rosei, F. Photovoltaic effect in multiphase Bi-Mn-O thin films. Opt. Express 22, A80–A89 (2014).

    ADS  Article  Google Scholar 

  23. 23

    Malinovskii, V. K. & Sturman, B. I. Photoelectric effects in ferroelectrics with high-mobile nonequilibrium electrons. Ferroelectrics 43, 125–129 (1982).

    Article  Google Scholar 

  24. 24

    von Baltz, R. & Kraut, W. Theory of the bulk photovoltaic effect in pure crystals. Phys. Rev. B 23, 5590–5596 (1981).

    ADS  Article  Google Scholar 

  25. 25

    Wemple, S. H., DiDomenico, M. & Camlibel, I. Dielectric and optical properties of melt-grown BaTiO3 . J. Phys. Chem. Solids 29, 1797–1803 (1968).

    ADS  Article  Google Scholar 

  26. 26

    Chynoweth, A. G. Surface space-charge layers in barium titanate. Phys. Rev. 102, 705–714 (1956).

    ADS  Article  Google Scholar 

  27. 27

    Chen, F. S. Optically induced change of refractive indices in LiNbO3 and LiTaO3 . J. Appl. Phys. 40, 3389–3396 (1969).

    ADS  Article  Google Scholar 

  28. 28

    Krogstrup, P. et al. Single-nanowire solar cells beyond the Shockley-Queisser limit. Nature Photon. 7, 306–310 (2013).

    ADS  Article  Google Scholar 

  29. 29

    Kolodinski, S., Werner, J. H., Wittchen, T. & Queisser, H. J. Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells. Appl. Phys. Lett. 63, 2405–2407 (1993).

    ADS  Article  Google Scholar 

  30. 30

    Berglund, C. N. & Braun, H. J. Optical absorption in single-domain ferroelectric barium titanate. Phys. Rev. 164, 790–799 (1967).

    ADS  Article  Google Scholar 

  31. 31

    Koch, W. T. H., Munser, R., Ruppel, W. & Wurfel, P. Anomalous photovoltage in BaTiO3 . Ferroelectrics 13, 305–307 (1976).

    Article  Google Scholar 

  32. 32

    Jona, F. & Shirane, G. Ferroelectric Crystals (Dover, 1962).

    Google Scholar 

  33. 33

    Fridkin, V. Ferroelectric Semiconductors (Consultants Bureau, 1980).

    Google Scholar 

  34. 34

    Kang, M., Kim, I., Chu, M., Kim, S. W. & Ryu, J.-W. Optical properties of sputtered indium-tin-oxide thin films. J. Kor. Phys. Soc. 59, 3280–3283 (2011).

    Article  Google Scholar 

  35. 35

    Data for Newport model LCS-100 94011A AM1.5G Fig. 1;

  36. 36

    Ross, R. & Nozik, A. Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 53, 3813–3818 (1982).

    ADS  Article  Google Scholar 

  37. 37

    Schaller, R. D. & Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004).

    ADS  Article  Google Scholar 

  38. 38

    Nozik, A. J. et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110, 6873–6890 (2010).

    Article  Google Scholar 

  39. 39

    Semonin, O. E. et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    ADS  Article  Google Scholar 

  40. 40

    Green, M. Third Generation Photovoltaics: Ultra-High Efficiency at Low Cost (Springer, 2006).

    Google Scholar 

  41. 41

    Conibeer, G. Third-generation photovoltaics. Mater. Today 11, 42–50 (2007).

    Article  Google Scholar 

Download references


The authors thank L. Tan, F. Zheng, E. J. Mele, J. B. Baxter and I. Grinberg for discussions. J.E.S. acknowledges the support of the US Army Research Office through grant no. W911NF-14-1-0500. A.M.R. acknowledges the support of the Department of Energy through grant no. DE-FG02-07ER46431. Y.Q. and C.J.H. acknowledge the support of the Office of Naval Research through grant no. N00014-14-1-0761. S.M.Y. was supported by a National Research Council Research Associateship Award at the US Naval Research Laboratory. The authors acknowledge core materials characterization facilities at Drexel for access to electron and focused ion beam microscopy, including instrumentation supported by the National Science Foundation under grant no. DMR 0722845. The authors also acknowledge additional support from the National Science Foundation and the Semiconductor Research Corporation under the Nanoelectronics in 2020 and Beyond Program under grant no. DMR 1124696.

Author information




V.M.F. and J.E.S. proposed the ideas and designed the experiments. V.M.F., A.R.A., Z.G., C.J.H., D.I., A.L.B.-J. and G.X. designed the optical and optoelectronic set-ups, collected photogenerated Hall and photocurrent data, and performed optical and microscopy measurements. J.E.S., V.M.F., A.M.R., A.P., S.M.Y., Y.Q. and C.L.J. contributed to analyses of the data and results, and validation of the model, including simulations. J.E.S. and V.M.F. wrote the manuscript, and with A.M.R., A.P., S.M.Y. and Y.Q., edited the manuscript.

Corresponding author

Correspondence to Jonathan E. Spanier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 633 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spanier, J., Fridkin, V., Rappe, A. et al. Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator. Nature Photon 10, 611–616 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing