Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent control with a short-wavelength free-electron laser

Abstract

Extreme ultraviolet and X-ray free-electron lasers (FELs) produce short-wavelength pulses with high intensity, ultrashort duration, well-defined polarization and transverse coherence, and have been utilized for many experiments previously possible only at long wavelengths: multiphoton ionization1, pumping an atomic laser2 and four-wave mixing spectroscopy3. However one important optical technique, coherent control, has not yet been demonstrated, because self-amplified spontaneous emission FELs have limited longitudinal coherence4,5,6,7. Single-colour pulses from the FERMI seeded FEL are longitudinally coherent8,9, and two-colour emission is predicted to be coherent. Here, we demonstrate the phase correlation of two colours, and manipulate it to control an experiment. Light of wavelengths 63.0 and 31.5 nm ionized neon, and we controlled the asymmetry of the photoelectron angular distribution10,11 by adjusting the phase, with a temporal resolution of 3 as. This opens the door to new short-wavelength coherent control experiments with ultrahigh time resolution and chemical sensitivity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Machine configuration used in the present study.
Figure 2: Spectrometer set-up and image.
Figure 3: Ionization scheme, β parameter variation and time resolution.

References

  1. Young, L. et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466, 56–61 (2010).

    Article  ADS  Google Scholar 

  2. Rohringer, N. et al. Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature 481, 488–491 (2012).

    Article  ADS  Google Scholar 

  3. Bencivenga, F. et al. Four wave mixing experiments with extreme ultraviolet transient gratings. Nature 520, 205–208 (2015).

    Article  ADS  Google Scholar 

  4. Singer, A. et al. Hanbury Brown–Twiss interferometry at a free-electron laser. Phys. Rev. Lett. 111, 034802 (2013).

    Article  ADS  Google Scholar 

  5. Lehmkühler, F. et al. Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime. Sci. Rep. 4, 5234 (2014).

    Article  Google Scholar 

  6. Alaimo, M. D. et al. Mapping the transverse coherence of the self amplified spontaneous emission of a free-electron laser with the heterodyne speckle method. Opt. Express 22, 30013 (2014).

    Article  ADS  Google Scholar 

  7. Bachelard, R. et al. Wavefront analysis of nonlinear self-amplified spontaneous-emission free-electron laser harmonics in the single-shot regime. Phys. Rev. Lett. 106, 234801 (2011).

    Article  ADS  Google Scholar 

  8. Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nature Photon. 6, 699–704 (2012).

    Article  ADS  Google Scholar 

  9. Allaria, E. et al. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser. Phys. Rev. X 4, 041040 (2014).

    Google Scholar 

  10. Brumer, P. & Shapiro, M. Principles of the Quantum Control of Molecular Processes (Wiley, 2003).

    MATH  Google Scholar 

  11. Brumer, P. & Shapiro, M. Control of unimolecular reactions using coherent light. Chem. Phys. Lett. 126, 541–546 (1986).

    Article  ADS  Google Scholar 

  12. Brif, C., Chakrabarti, R. & Rabitz, H. Control of quantum phenomena: past, present and future. New J. Phys. 12, 075008 (2010).

    Article  ADS  Google Scholar 

  13. Ehlotzky, F. Atomic phenomena in bichromatic laser fields. Phys. Reports 345, 175–264 (2001).

    Article  ADS  Google Scholar 

  14. Yin, Y.-Y., Chen, C., Elliott, D. S. & Smith, A. V. Asymmetric photoelectron angular distributions from interfering photoionization processes. Phys. Rev. Lett. 69, 2353 (1992).

    Article  ADS  Google Scholar 

  15. Baranova, N. B. et al. Observation of an interference of one- and two-photon ionization of the sodium 4s state. JETP Lett. 55, 439–444 (1992).

    ADS  Google Scholar 

  16. Wang, Z.-M. & Elliott, D. S. Determination of the phase difference between even and odd continuum wave functions in atoms through quantum interference measurements. Phys. Rev. Lett. 87, 173001 (2001).

    Article  ADS  Google Scholar 

  17. Baranova, N. B. & Zel'dovich, B. Ya. Physical effects in optical fields with non-zero average cube, <E3> ≠ 0. J. Opt. Soc. Am. 8, 27–32 (1991).

    Article  ADS  Google Scholar 

  18. Sorgenfrei, F. et al. The extreme ultraviolet split and femtosecond delay unit at the plane grating monochromator beamline PG2 at FLASH. Rev. Sci. Instrum. 81, 043107 (2010).

    Article  ADS  Google Scholar 

  19. Tzallas, P., Charalambidis, D., Papadogiannis, N. A., Witte, K. & Tsakiris, G. D. Direct observation of attosecond light bunching. Nature 426, 267–271 (2003).

    Article  ADS  Google Scholar 

  20. Mauritsson, J. et al. Attosecond pulse trains generated using two color laser fields. Phys. Rev. Lett. 97, 013001 (2006).

    Article  ADS  Google Scholar 

  21. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  22. Ranitovic, P. et al. Attosecond vacuum UV coherent control of molecular dynamics. Proc. Natl Acad. Sci. USA 111, 912–917 (2014).

    Article  ADS  Google Scholar 

  23. Johnsson, P., Mauritsson, J., Remetter, T., L'Huillier, A. & Schafer, K. J. Attosecond control of ionization by wave-packet interference. Phys. Rev. Lett. 99, 233001 (2007).

    Article  ADS  Google Scholar 

  24. Schumacher, D. W., Weihe, F., Muller, H. G. & Bucksbaum, P. H. Phase dependence of intense field ionization a study using two colors. Phys. Rev. Lett. 73, 1344 (1994).

    Article  ADS  Google Scholar 

  25. Sasaki, S. Analyses for a planar variably-polarizing undulator. Nucl. Instrum. Meth. A 347, 83–86 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  26. Diviacco, B., Bracco, R., Millo, D. & Musardo, M. Phase shifters for the FERMI@Elettra undulators. In Proc. IPAC 2011 3278–3280 (IPAC, 2011).

  27. Zangrando, M. et al. Recent results of PADReS, the Photon Analysis Delivery and REduction System, from the FERMI FEL commissioning and user operations. J. Synch. Rad. 22, 565–570 (2015).

    Article  Google Scholar 

  28. Franco, I. & Brumer, P. Minimum requirements for laser-induced symmetry breaking in quantum and classical mechanics. J. Phys. B: At. Mol. Opt. Phys. 41, 074003 (2008).

    Article  ADS  Google Scholar 

  29. Garcia, G. A., Nahon, L. & Powis, I. Two-Dimensional charged particle image inversion using a polar basis function Expansion. Rev. Sci. Instrum. 75, 4989–4996 (2004).

    Article  ADS  Google Scholar 

  30. Grum-Grzhimailo, A. N., Gryzlova, E. V., Staroselskaya, E. I., Venzke, J. & Bartschat, K. Phys. Rev. A 91, 063418 (2015).

    Article  ADS  Google Scholar 

  31. Lyamayev, V. et al. A modular end-station for atomic, molecular, and cluster science at the Low Density Matter beamline of FERMI@Elettra. J. Phys. B 46, 164007 (2013).

    Article  ADS  Google Scholar 

  32. Svetina, C. et al. The Low Density Matter (LDM) beamline at FERMI: optical layout and first commissioning. J. Synch. Rad. 22, 538–543 (2015).

    Article  Google Scholar 

  33. Fawley, W. M. An enhanced GINGER simulation code with harmonic emission and HDF5 IO capabilities. In Proc. FEL (eds Abo-Bakr, M. et al.) 218, abstract MOPPH07 (BESSY, 2006); http://accelconf.web.cern.ch/AccelConf/f06/PAPERS/MOPPH073.PDF

  34. NIST Atomic Spectra Database (NIST, accessed 31 January 2016); http://www.nist.gov/pml/data/asd.cfm

  35. Svetina, C. et al. Characterization of the FERMI@Elettra's on-line photon energy spectrometer. In Proc. SPIE Vol. 8139 (eds Morawe, C. et al.) 81390J (SPIE, 2011).

    Article  Google Scholar 

  36. Mazza, T. et al. Determining the polarization state of a short-wavelength free-electron laser beam using atomic circular dichroism. Nature Commun. 5, 3648 (2014).

    Article  ADS  Google Scholar 

  37. Raimondi, L. et al. Microfocusing of the FERMI@Elettra FEL beam with a K-B active optics system: spot size predictions by application of the WISE code. Nucl. Instrum. Meth. A 710, 131–138 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the project CENILS (funded by the Central Europe Programme 2007–2013), which provided the wavefront sensor. We acknowledge the support of the Alexander von Humboldt Foundation (Project Tirinto), the Italian Ministry of Research (Project FIRB No. RBID08CRXK and PRIN 2010ERFKXL_006), and funding from the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 641789 MEDEA (Molecular Electron Dynamics investigated by IntensE Fields and Attosecond Pulses). K.B., N.D. and J.V. acknowledge support from the US National Science Foundation under grants No. PHY-1430245 and XSEDE-090031. D.I., Y.K. and K.U. are grateful for support from the X-ray Free Electron Laser Priority Strategy Program of MEXT. D.I., K.U. and T.T. are grateful for support from IMRAM, Tohoku University. T.M. and M.M. acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) under grant nos. SFB 925/A1 and A3. A.N.G.G. acknowledges support from the European XFEL. M.N. acknowledges the ERC Starting Research Grant UDYNI, grant agreement no. 307964, EC Seventh Framework Programme.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was conceived by K.C.P., G.S., A.N.G.G. and K.U., and the method of operating FERMI to carry it out was devised by E.A. and L.G. The experiment was prepared and carried out by K.C.P., E.A., C.C., R.C., G.D.N., S.D.M., B.D., E.F., P.F., D.G., L.G., N.M., G.P., O.P., L.R., P.R., E.R., C.S., M.T., M.Z., G.S., P.C., D.I., Y.K., T.T., K.U., A.F., F.S., E.O., T.M., M.N., M.C. and M.M. Theoretical calculations (of machine properties or neon spectra) were performed by E.A., L.G., A.N.G.G., E.V.G., S.I.S., K.B., N.D. and J.V. Detailed data analysis was performed by M.R., P.C. and D.I. The manuscript was drafted by K.C.P. and completed in consultation with all authors.

Corresponding authors

Correspondence to K. C. Prince, G. Sansone or K. Ueda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1128 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prince, K., Allaria, E., Callegari, C. et al. Coherent control with a short-wavelength free-electron laser. Nature Photon 10, 176–179 (2016). https://doi.org/10.1038/nphoton.2016.13

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing