Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Resolved-sideband Raman cooling of an optical phonon in semiconductor materials

A Publisher Correction to this article was published on 25 April 2019

Abstract

The radiation pressure of light has been widely used to cool trapped atoms or the mechanical vibrational modes of optomechanical systems. Recently, by using the electrostrictive forces of light, spontaneous Brillouin cooling and stimulated Brillouin excitation of acoustic modes of the whispering-gallery-type resonator have been demonstrated. The laser cooling of specific lattice vibrations in solids (that is, phonons) proposed by Dykman in the late 1970s, however, still remains sparsely investigated. Here, we demonstrate the first strong spontaneous Raman cooling and heating of a longitudinal optical phonon (LOP) with a 6.23 THz frequency in polar semiconductor zinc telluride nanobelts. We use the exciton to resonate and assist photoelastic Raman scattering from the LOPs caused by a strong exciton–LOP coupling. By detuning the laser pump to a lower (higher) energy-resolved sideband to make a spontaneous scattering photon resonate with an exciton at an anti-Stokes (Stokes) frequency, the dipole oscillation of the LOPs is photoelastically attenuated (enhanced) to a colder (hotter) state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystalline structure and LOP modes of the zincblende semiconductor ZnTe.
Figure 2: Principle of the resolved-sideband cooling and amplification in semiconductors.
Figure 3: Resolved-sideband cooling results of the LOP pumped at the red-detuned resolved sideband.
Figure 4: Amplification results of the LOP pumped at a blue-detuned resolved sideband.

Similar content being viewed by others

References

  1. Boyd, R. W. Nonlinear Optics 2nd edn, 394 (Academic Press, 2003).

    Google Scholar 

  2. Yu, P. Y. & Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties 3rd edn, 375 (Springer, 2005).

    Book  Google Scholar 

  3. Chu, S. Nobel Lecture. The manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706 (1998).

    Article  ADS  Google Scholar 

  4. Diedrich, F., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 62, 403–406 (1989).

    Article  ADS  Google Scholar 

  5. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    Article  ADS  Google Scholar 

  6. Wieman, C. E., Pritchard, D. E. & Wineland, D. J. Atom cooling, trapping, and quantum manipulation. Rev. Mod. Phys. 71, S253–S262 (1999).

    Article  Google Scholar 

  7. Wineland, D. J., Itano, W. M., Bergquist, J. C. & Hulet, R. G. Laser-cooling limits and single-ion spectroscopy. Phys. Rev. A 36, 2220–2232 (1987).

    Article  ADS  Google Scholar 

  8. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article  ADS  Google Scholar 

  9. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  ADS  Google Scholar 

  10. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  ADS  Google Scholar 

  11. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    Article  ADS  Google Scholar 

  12. Verhagen, E. et al. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012).

    Article  ADS  Google Scholar 

  13. Clerk, A. A. et al. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  14. Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).

    Article  ADS  Google Scholar 

  15. Zhang, J., Li, D., Chen, R. & Xiong, Q. Laser cooling of a semiconductor by 40 kelvin. Nature 493, 504–508 (2013).

    Article  ADS  Google Scholar 

  16. Epstein, R. I. et al. Observation of laser-induced fluorescent cooling of solid. Nature 377, 500–503 (1995).

    Article  ADS  Google Scholar 

  17. Ha, S.-T., Shen, C., Zhang, J. & Xiong, Q. Laser cooling of organic–inorganic lead halide perovskites. Nature Photon. 10, 115–121 (2016).

    Article  ADS  Google Scholar 

  18. Dykman, M. I. Relaxation of impurities in a nonresonant field and phonon amplification. Sov. J. Low Temp. Phys. 5, 89–95 (1979).

    Google Scholar 

  19. Dykman, M. I. Heating and cooling of local and quasilocal vibration by a nonresonance field. Sov. Phys. Solid State 20, 1306–1311 (1978).

    Google Scholar 

  20. Bahl, G., Tomes, M., Marquardt, F. & Carmon, T. Observation of spontaneous Brillouin cooling. Nature Phys. 8, 203–207 (2012).

    Article  ADS  Google Scholar 

  21. Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010).

    Article  ADS  Google Scholar 

  22. Madelung, O., Rössler, U. & Schulz, M. Landolt–Bornstein Numerical Data and Functional Relationships in Science and Technology, Group III: Condensed Matter. Semiconductors: II–VI and I–VII Compounds Vol. 41B, 159 (Springer, 1999).

    Google Scholar 

  23. Lee, K. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).

    Article  ADS  Google Scholar 

  24. Haroche, S. & Kleppner, D. Cavity quantum electrodynamics. Phys. Today 42, 24–30 (1989).

    Article  ADS  Google Scholar 

  25. Khitrova, G. et al. Vacuum Rabi splitting in semiconductors. Nature Phys. 2, 81–90 (2006).

    Article  ADS  Google Scholar 

  26. Groblacher, S., Hammerer, K., Vanner, M. R. & Aspelmeyer, M. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724–727 (2009).

    Article  ADS  Google Scholar 

  27. Zhang, Q. et al. Highly enhanced exciton recombination rate by strong electron–phonon coupling in single ZnTe nanobelt. Nano Lett. 12, 6420–6427 (2012).

    Article  ADS  Google Scholar 

  28. Vahala, K. et al. A phonon laser. Nature Phys. 5, 682–686 (2009).

    Article  ADS  Google Scholar 

  29. Bahl, G., Zehnpfennig, J., Tomes, M. & Carmon, T. Stimulated optomechanical excitation of surface acoustic waves in a microdevice. Nature Commun. 2, 403 (2011).

    Article  ADS  Google Scholar 

  30. Kolkowitz, S. et al. Coherent sensing of a mechanical resonator with a single-spin qubit. Science 335, 1603–1606 (2012).

    Article  ADS  Google Scholar 

  31. Rand, S. C. Raman laser cooling of solids. J. Lumines. 133, 10–14 (2013).

    Article  ADS  Google Scholar 

  32. Chen, Y.-C. & Bahl, G. Raman cooling of solids through photonic density of states engineering. Optica 2, 893–899 (2015).

    Article  ADS  Google Scholar 

  33. Utama, M. I. B. et al. The growth of ultralong ZnTe micro/nanostructures: the influence of polarity and twin direction on the morphogenesis of nanobelts and nanosheets. Cryst. Growth Des. 13, 2590–2596 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge M.S. Kim for stimulating discussions. J.Z. acknowledges support from the National Natural Science Foundation of China (grant no. 11574305 and no. 51527901), China MOST (grant no. 2016YFA0301200) and the National Young 1000 Talent Plan of China. J.Z. and Q.X. acknowledge support from the LU JIAXI International team program supported by the K.C. Wong Education Foundation and the Chinese Academy of Sciences. Q.X. acknowledges major support from the Singapore National Research Foundation through a Fellowship grant (NRF-RF2009-06) and an Investigatorship Award (NRF-NRFI2015-03) and the Singapore Ministry of Education via two AcRF Tier 2 grants (MOE2011-T2-2-051 and MOE2013-T2-1-049). Q.X. also gratefully acknowledges partial support from the Asian Office of Aerospace Research and Development (FA2386-13-1-4112), an international office of the US Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. and Q.X. conceived the idea. J.Z. designed the experiments. J.Z., Q.Z. and X.W. performed the experiments and prepared the samples. J.Z., L.C.K. and Q.X. analysed the data and wrote the manuscript. All the authors read and commented on the manuscript.

Corresponding authors

Correspondence to Jun Zhang or Qihua Xiong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2772 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, Q., Wang, X. et al. Resolved-sideband Raman cooling of an optical phonon in semiconductor materials. Nature Photon 10, 600–605 (2016). https://doi.org/10.1038/nphoton.2016.122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing