Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Two-photon direct laser writing of ultracompact multi-lens objectives

This article has been updated

Abstract

Current lens systems are restricted in size, shape and dimensions by limitations of manufacturing. Multi-lens elements with non-spherical shapes are required for high optical performance and to correct for aberrations when imaging at wide angles and large fields. Here we present a novel concept in optics that overcomes all of the aforementioned difficulties and opens the new field of 3D printed micro- and nano-optics with complex lens designs. We demonstrate the complete process chain, from optical design, manufacturing by femtosecond two-photon direct laser writing and testing to the application of multi-lens objectives with sizes around 100 µm, and validate their high performance and functionality by quantitative measurements of the modulation transfer function and aberrations. The unprecedented flexibility of our method paves the way towards printed optical miniature instruments such as endoscopes, fibre-imaging systems for cell biology, new illumination systems, miniature optical fibre traps, integrated quantum emitters and detectors, and miniature drones and robots with autonomous vision.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Coloured SEM image of a triplet lens objective attached to an optical fibre inserted into the hollow needle of a syringe.
Figure 2: Comparison of singlet, doublet and triplet printed lens systems.
Figure 3: Performance measurement using the USAF 1951 resolution test chart, the Telefunken FuBK test card and the knife-edge methodology to determine the MTF.
Figure 4: Measurement of the longitudinal (axial) chromatic aberration.
Figure 5: Regular arrangement of doublet lens systems directly fabricated on a CMOS image sensor.
Figure 6: Triplet objective lens system fabricated directly on an imaging fibre.

Change history

  • 06 July 2016

    In the version of this Article originally published online, ref. 23 'Gissibl, T., Thiele, S., Herkommer, A. & Giessen, H. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nature Commun. 7, 11763 (2016)' was missing. This reference has now been added to the main text and the reference list and subsequent references have been renumbered in all versions of the Article.

References

  1. Vaezi, M., Seitz, H. & Yang, S. A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Technol. 67, 1721–1754 (2013).

    Article  Google Scholar 

  2. Popovic, Z. D., Sprague, R. A. & Connell, G. A. N. Technique for monolithic fabrication of microlens arrays. Appl. Opt. 27, 1281–1284 (1988).

    ADS  Article  Google Scholar 

  3. Lee, S.-K., Lee, K.-C. & Lee, S. S. A simple method for microlens fabrication by the modified LIGA process. J. Micromech. Microeng. 12, 334–340 (2002).

    ADS  Article  Google Scholar 

  4. Lee, B.-K., Kim, D. S. & Kwon, T. H. Replication of microlens arrays by injection molding. Microsyst. Technol. 10, 531–535 (2004).

    Article  Google Scholar 

  5. Kim, J. Y. et al. Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique. Opt. Mater. Express 1, 259–269 (2011).

    ADS  Article  Google Scholar 

  6. Völkel, R., Eisner, M. & Weible, K. J. Miniaturized imaging systems. Microelectron. Eng. 67–68, 461–472 (2003).

    Article  Google Scholar 

  7. Kuang, D., Zhang, X., Gui, M. & Fang, Z. Hexagonal microlens array fabricated by direct laser writing and inductively coupled plasma etching on organic light emitting devices to enhance the outcoupling efficiency. Appl. Opt. 48, 974–978 (2009).

    ADS  Article  Google Scholar 

  8. Yang, R., Wang, W. & Soper, S. A. Out-of-plane microlens array fabricated using ultraviolet lithography. Appl. Phys. Lett. 86, 1–3 (2005).

    Google Scholar 

  9. Völkel, R. et al. Technology trends of microlens imprint lithography and wafer level cameras (WL). In MOC'08, Conference on Micro-Optics. Brussels, Belgium, 25–27 September (Microoptics Group, 2008).

  10. Hoy, C. L. et al. Miniaturized probe for femtosecond laser microsurgery and two-photon imaging. Opt. Express 16, 9996–10005 (2008).

    ADS  Article  Google Scholar 

  11. Biehl, S., Danzebrink, R., Oliveira, P. & Aegerter, M. A. Refractive microlens fabrication by ink-jet process. J. Sol-Gel Sci. Technol. 13, 177–182 (1998).

    Article  Google Scholar 

  12. Brückner, A. et al. Ultra-thin wafer-level camera with 720p resolution using micro-optics. In Proc. SPIE: Novel Optical Systems Design and Optimization XVII 91930W (eds Gregory, G. G. & Davis, A. J.) (SPIE, 2014).

  13. Cumpston, B. H. et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51–54 (1999).

    ADS  Article  Google Scholar 

  14. Deubel, M. et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature Mater. 3, 444–447 (2004).

    ADS  Article  Google Scholar 

  15. Farsari, M. & Chichkov, B. N. Materials processing: two-photon fabrication. Nature Photon. 3, 450–452 (2009).

    ADS  Article  Google Scholar 

  16. Sinzinger, S. & Jahns, J. Microoptics (Wiley Verlag GmbH & Co. KGaA, 2003).

    Book  Google Scholar 

  17. Zappe, H. Fundamentals of Micro-Optics (Cambridge Univ. Press, 2010).

    Book  Google Scholar 

  18. Malinauskas, M. et al. A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses. J. Opt. 12, 035204 (2010).

    ADS  Article  Google Scholar 

  19. Malinauskas, M. et al. Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization. J. Opt. 12, 124010 (2010).

    ADS  Article  Google Scholar 

  20. Williams, H. E., Freppon, D. J., Kuebler, S. M., Rumpf, R. C. & Melino, M. A. Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8. Opt. Express 19, 22910–22922 (2011).

    ADS  Article  Google Scholar 

  21. Malinauskas, M., Farsari, M., Piskarskas, A. & Juodkazis, S. Ultrafast laser nanostructuring of photopolymers: a decade of advances. Phys. Rep. 533, 1–31 (2013).

    ADS  Article  Google Scholar 

  22. Gissibl, T., Schmid, M. & Giessen, H. Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing. Optica 3, 448–451 (2016).

    ADS  Article  Google Scholar 

  23. Gissibl, T., Thiele, S., Herkommer, A. & Giessen, H. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nature Commun. 7, 11763 (2016).

    ADS  Article  Google Scholar 

  24. Han, H., Kriman, M. & Boomgarden, M. Wafer level camera technology - from wafer level packaging to wafer level integration. In 11th International Conference on Electronic Packaging Technology and High Density Packaging (IEEE, 2010).

  25. Bückmann, T. et al. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24, 2710–2714 (2012).

    Article  Google Scholar 

  26. Dunkel, J. et al. Fabrication of refractive freeform array masters for artificial compound eye cameras. Proc. SPIE: Micro-Optics 9130, 91300P (2014).

    Article  Google Scholar 

  27. Kowalczyk, M., Haberko, J. & Wasylczyk, P. Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing. Opt. Express 22, 12545–12550 (2014).

    ADS  Article  Google Scholar 

  28. Blattmann, M., Ocker, M., Zappe, H. & Seifert, A. Jet printing of convex and concave polymer micro-lenses. Opt. Express 23, 24525–24536 (2015).

    ADS  Article  Google Scholar 

  29. Zhang, W., Aljasem, K., Zappe, H. & Seifert, A. Highly flexible MTF measurement system for tunable micro lenses. Opt. Express 18, 12458–12469 (2010).

    ADS  Article  Google Scholar 

  30. Werber, A. & Zappe, H. Tunable microfluidic microlenses. Appl. Opt. 44, 3238–3245 (2005).

    ADS  Article  Google Scholar 

  31. Friese, C., Werber, A., Krogmann, F., Mönch, W. & Zappe, H. Materials, effects and components for tunable micro-optics. IEEJ Trans. Electr. Electron. Eng. 2, 232–248 (2007).

    Article  Google Scholar 

  32. Song, C., Nguyen, N.-T., Tan, S.-H. & Asundi, A. K. Modelling and optimization of micro optofluidic lenses. Lab Chip 9, 1178–1184 (2009).

    Article  Google Scholar 

  33. Michel, A. K. U. et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett. 13, 3470–3475 (2013).

    ADS  Article  Google Scholar 

  34. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nature Mater. 13, 139–150 (2014).

    ADS  Article  Google Scholar 

  35. Yin, X. et al. Active chiral plasmonics. Nano Lett. 15, 4255–4260 (2015).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the DFG (SPP1391, FOR730 and GI 269/11-1), BMBF (13N10146, PRINTOPTICS), Baden-Württemberg Stiftung (Internationale Spitzenforschung II and Intelligente Optische Sensorik) and ERC (COMPLEXPLAS). We would like to thank B. Frank for performing atomic force microscope measurements and T. Mappes from Carl Zeiss AG for help with the lens characterization. We would like to thank M. Grauer for strong support.

Author information

Authors and Affiliations

Authors

Contributions

T.G., S.T. and H.G. conceived the concept. T.G. performed simulations, structural designs, direct laser writing and experimental characterization. S.T. and A.H. were responsible for optical and structural design. H.G. participated in planning the experiments and supervised the project. All authors participated in discussions and contributed to writing of the manuscript.

Corresponding author

Correspondence to Timo Gissibl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 791 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gissibl, T., Thiele, S., Herkommer, A. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photon 10, 554–560 (2016). https://doi.org/10.1038/nphoton.2016.121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.121

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing