Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electron spin polarization in strong-field ionization of xenon atoms


As a fundamental property of the electron, the spin plays a decisive role in the electronic structure of matter, from solids to molecules and atoms, for example, by causing magnetism. Yet, despite its importance, the spin dynamics of the electrons released during the interaction of atoms with strong ultrashort laser pulses has remained experimentally unexplored1,2. Here, we report the experimental detection of electron spin polarization by the strong-field ionization of xenon atoms and support our results with theoretical analysis. We found up to 30% spin polarization changing its sign with electron energy. This work opens the new dimension of spin to strong-field physics. It paves the way to the production of sub-femtosecond spin-polarized electron pulses with applications ranging from probing the magnetic properties of matter at ultrafast timescales3 to testing chiral molecular systems with sub-femtosecond temporal and sub-ångström spatial resolutions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Spin polarization of the electrons ejected by strong-field ionization of Xe parallel to the direction of light propagation by circularly polarized laser pulses.
Figure 2: Ionization process and theoretical energy distribution of s and p states.
Figure 3: Calculated kinetic energy distributions for electrons correlated with different Xe+ states.


  1. Barth, I. & Smirnova, O. Spin-polarized electrons produced by strong-field ionization. Phys. Rev. A 88, 013401 (2013).

    Article  ADS  Google Scholar 

  2. Barth, I. & Smirnova, O. Hole dynamics and spin currents after ionization in strong circularly polarized laser fields. J. Phys. B 47, 204020 (2014).

    Article  ADS  Google Scholar 

  3. Krieger, K., Dewhurst, J. K., Elliott, P., Sharma, S. & Gross, E. K. U. Laser induced ultrafast demagnetization: an ab initio perspective. Preprint at (2014).

  4. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    Article  ADS  Google Scholar 

  5. Heckenkamp, C., Schäfers, F., Schönhense, G. & Heinzmann, U. Experimental characterization of the Xe 5p photoionization by angle- and spin-resolved photoelectron spectroscopy. Z. Phys. D 2, 257–274 (1986).

    Article  ADS  Google Scholar 

  6. Fano, U. Spin orientation of photoelectrons ejected by circularly polarized light. Phys. Rev. 178, 131 (1969).

    Article  ADS  Google Scholar 

  7. Lambropoulos, P. Spin-orbit coupling and photoelectron polarization in multiphoton ionization of atoms. Phys. Rev. Lett. 30, 413 (1973).

    Article  ADS  Google Scholar 

  8. Lambropoulos, P. On producing totally polarized electrons through multiphoton ionization. J. Phys. B 7, L33 (1974).

    Article  ADS  Google Scholar 

  9. Dixit, S. N., Lambropoulos, P. & Zoller, P. Spin polarization of electrons in two-photon resonant three-photon ionization. Phys. Rev. A 24, 318 (1981).

    Article  ADS  Google Scholar 

  10. Larochelle, S., Talebpour, A. & Chin, S. L. Non-sequential multiple ionization of rare gas atoms in a Ti:Sapphire laser field. J. Phys. B 31, 1201–1214 (1998).

    Article  ADS  Google Scholar 

  11. Hankin, S. M., Villeneuve, D. M., Corkum, P. B. & Rayner, D. M. Intense-field laser ionization rates in atoms and molecules. Phys. Rev. A 64, 013405 (2001).

    Article  ADS  Google Scholar 

  12. Corkum, P. B., Burnett, N. H. & Brunel, F. Above-threshold ionization in the long-wavelength limit. Phys. Rev. Lett. 62, 1259 (1989).

    Article  ADS  Google Scholar 

  13. Burnett, G. C., Monroe, T. J. & Dunning, F. B. High-efficiency retarding-potential Mott polarization analyzer. Rev. Sci. Instrum. 65, 1893–1896 (1994).

    Article  ADS  Google Scholar 

  14. Salieres, P. et al. Feynman's path-integral approach for intense-laser-atom interactions. Science 292, 902–905 (2001).

    Article  ADS  Google Scholar 

  15. Meckel, M. et al. Laser-induced electron tunneling and diffraction. Science 320, 1478–1482 (2008).

    Article  ADS  Google Scholar 

  16. Spanner, M., Smirnova, O. Corkum, B. P. & Ivanov, M. Y. Reading diffraction images in strong field ionization of diatomic molecules. J. Phys. B 37, L243 (2004).

    Article  ADS  Google Scholar 

  17. Huismans, Y. et al. Time-resolved holography with photoelectrons. Science 331, 61–64 (2011).

    Article  ADS  Google Scholar 

  18. Blaga, C. et al. Imaging ultrafast molecular dynamics with laser-induced electron diffraction. Nature 483, 194–197 (2012).

    Article  ADS  Google Scholar 

  19. Pullen, M. G. et al. Imaging an aligned polyatomic molecule with laser-induced electron diffraction. Nature Commun. 6, 7262 (2015).

    Article  ADS  Google Scholar 

  20. Milosevic, D. B., Becker, W. & Kopold, R. Generation of circularly polarized high-order harmonics by two-color coplanar field mixing. Phys. Rev. A 61, 063403 (2000).

    Article  ADS  Google Scholar 

  21. Fleischer, A., Kfir, O., Diskin, T., Sidorenko, P. & Cohen, O. Spin angular momentum and tunable polarization in high-harmonic generation. Nature Photon. 8, 543–549 (2014).

    Article  ADS  Google Scholar 

  22. Kfir, O. et al. Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics. Nature Photon. 9, 99–105 (2015).

    Article  ADS  Google Scholar 

  23. Medisauskas, L. et al. Generating isolated elliptically polarized attosecond pulses using bichromatic counterrotating circularly polarized laser fields. Phys. Rev. Lett. 115, 153001 (2015).

    Article  ADS  Google Scholar 

  24. Mancuso, C. A. et al. Strong-field ionization with two-color circularly polarized laser fields. Phys. Rev. A 91, 031402 (R), (2015).

    Article  ADS  Google Scholar 

  25. Baltuška, A., Paulus, G. G., Lindner, F., Kienberger, R. & Krausz, F. in Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (eds Ye, J. & Cundiff, S.) 263–313 (Springer, 2005).

    Book  Google Scholar 

  26. Popruzhenko, S. V., Paulus, G. G. & Bauer, D. Coulomb-corrected quantum trajectories in strong-field ionization. Phys. Rev. A 77, 053409 (2008).

    Article  ADS  Google Scholar 

  27. Muller, H. G. Tunneling excitation to resonant states in helium as main source of superponderomotive photoelectrons in the tunneling regime. Phys. Rev. Lett. 83, 3158–3161 (1999).

    Google Scholar 

Download references


The experimental work was supported by the Deutsche Forschungsgemeinschaft. A.H. and K.H. acknowledge support from the German National Merit Foundation. M.I. acknowledges support from the EPSRC Programme Grant EP/I032517/1 and the United States Air Force Office of Scientific Research program no. FA9550-12-1-0482. F.M. and O.S. acknowledge support from the DFG grant SM 292/2-3.

Author information

Authors and Affiliations



All authors edited and commented on the manuscript. A.H. and M.K. carried out the measurements. A.H., M.K., K.H., M.R., T.J., A.K., M.S. and L.S. built up the experimental set-up. A.H. and A.L. analysed the experimental data. F.M., M.I. and O.S. carried out the numerical simulations. R.D. supervised all work.

Corresponding author

Correspondence to Alexander Hartung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 555 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hartung, A., Morales, F., Kunitski, M. et al. Electron spin polarization in strong-field ionization of xenon atoms. Nature Photon 10, 526–528 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing