Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-fidelity transfer and storage of photon states in a single nuclear spin


Long-distance quantum communication requires photons and quantum nodes that comprise qubits for interaction with light and good memory capabilities, as well as processing qubits for the storage and manipulation of photons. Owing to the unavoidable photon losses, robust quantum communication over lossy transmission channels requires quantum repeater networks1,2. A necessary and highly demanding prerequisite for these networks is the existence of quantum memories with long coherence times to reliably store the incident photon states. Here we demonstrate the high-fidelity (98%) coherent transfer of a photon polarization state to a single solid-state nuclear spin that has a coherence time of over 10 s. The storage process is achieved by coherently transferring the polarization state of a photon to an entangled electron–nuclear spin state of a nitrogen–vacancy centre in diamond. The nuclear spin-based optical quantum memory demonstrated here paves the way towards an absorption-based quantum repeater network.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantum interface connecting light to a single nuclear spin in an NV centre.
Figure 2: Nuclear spin readout.
Figure 3: Full phase-space measurement.
Figure 4: Coherence of the nuclear spin memory.


  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  2. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    Article  ADS  Google Scholar 

  3. Reichle, R. et al. Experimental purification of two-atom entanglement. Nature 443, 838–841 (2006).

    Article  ADS  Google Scholar 

  4. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  5. Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  6. Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).

    Article  ADS  Google Scholar 

  7. Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008).

    Article  ADS  Google Scholar 

  8. Clausen, C. et al. Quantum storage of photonic entanglement in a crystal. Nature 469, 508–511 (2011).

    Article  ADS  Google Scholar 

  9. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    Article  ADS  Google Scholar 

  10. Kosaka, H. & Niikura, N. Entangled absorption of a single photon with a single spin in diamond. Phys. Rev. Lett. 114, 053603 (2015).

    Article  ADS  Google Scholar 

  11. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article  ADS  Google Scholar 

  12. Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  13. Duan, L.-M. & Monroe, C. Colloquium: Quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209–1224 (2010).

    Article  ADS  Google Scholar 

  14. Specht, H. P. et al. A single-atom quantum memory. Nature 473, 190–193 (2011).

    Article  ADS  Google Scholar 

  15. Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    Article  ADS  Google Scholar 

  16. Kalb, N., Reiserer, A., Ritter, S. & Rempe, G. Heralded storage of a photonic quantum bit in a single atom. Phys. Rev. Lett. 114, 220501 (2015).

    Article  ADS  Google Scholar 

  17. Bennett, C. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    Article  ADS  Google Scholar 

  18. Fuchs, G. D. et al. Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520–1522 (2009).

    Article  ADS  Google Scholar 

  19. Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).

    Article  ADS  Google Scholar 

  20. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article  ADS  Google Scholar 

  21. Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

    Article  ADS  Google Scholar 

  22. Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    Article  ADS  Google Scholar 

  23. Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    Article  ADS  Google Scholar 

  24. Maze, J. R. et al. Properties of nitrogen-vacancy centers in diamond: the group theoretic approach. New J. Phys. 13, 025025 (2011).

    Article  ADS  Google Scholar 

  25. Robledo, L., Bernien, H., van Weperen, I. & Hanson, R. Control and coherence of the optical transition of single nitrogen vacancy centers in diamond. Phys. Rev. Lett. 105, 177403 (2010).

    Article  ADS  Google Scholar 

  26. Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310 (2005).

    Article  ADS  Google Scholar 

  27. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  28. Jacques, V. et al. Dynamic polarisation of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature. Phys. Rev. Lett. 102, 057403 (2009).

    Article  ADS  Google Scholar 

  29. Koppens, F. H. L., Nowack, K. C. & Vandersypen, L. M. K. Spin echo of a single electron spin in a quantum dot. Phys. Rev. Lett. 100, 236802 (2008).

    Article  ADS  Google Scholar 

Download references


We thank H. Fedder, I. Gerhardt, I. Jakobi, K. Kafenda and K. Xia for technical support, M. Doherty, J. Greiner, D. Hunger, R. Liu, F. Shi, P. Siyushev and N. Zhao for fruitful discussions. M.M. and D.J.T. acknowledge finical support from The Defense Advanced Research Projects Agency (DARPA) SPARQC program. H.K. acknowledges financial support from the the National Institute of Information and Communications Technology (NICT) Quantum Repeater Project. J.W. acknowledges financial support from the European Research Council (ERC) project SQUTEC, DIAMANT, SIQS and QESSENCE, the Deutsche Forschungsgemeinschaft (DFG) SFB/TR21, JST-DFG (FOR1482), as well as the Volkswagenstiftung.

Author information

Authors and Affiliations



H.K. conceived the original idea, S.Y., Y.W. and P.N. designed the experiment, S.Y. and T.H.T. performed the experiment, S.Y., Y.W. and D.D.B. analysed data and wrote the paper, J.W. supervised the project and all authors commented on the manuscript.

Corresponding authors

Correspondence to Sen Yang or Jörg Wrachtrup.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1176 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Wang, Y., Rao, D. et al. High-fidelity transfer and storage of photon states in a single nuclear spin. Nature Photon 10, 507–511 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing