Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays

Abstract

We show that the nonlinear polarization dynamics of a vertical-cavity surface-emitting laser placed in an external cavity lead to the emission of temporal dissipative solitons. These are vectorial solitons because they appear as localized pulses in the polarized output, but leave the total intensity constant. When the cavity roundtrip time is much longer than the soliton duration, several independent solitons as well as bound states (molecules) may be hosted in the cavity. All these solitons coexist together and with the background solution. The experimental results are well described by a theoretical model that can be reduced to a single delayed equation for the polarization orientation, which allows the vectorial solitons to be interpreted as polarization kinks. A Floquet analysis is used to confirm the mutual independence of the observed solitons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Single DS regime.
Figure 3: Space–time diagrams of different coexisting situations.
Figure 4: Theoretical temporal traces.
Figure 5: Floquet multipliers μ.
Figure 6: Temporal trace using the normalized Stokes representation of the dynamics.

Similar content being viewed by others

References

  1. Akhmediev, N. & Ankiewicz, A. (eds) Dissipative Solitons (Springer, 2005).

    Book  Google Scholar 

  2. Akhmediev, N. & Ankiewicz, A. (eds) Dissipative Solitons: From Optics to Biology and Medicine (Springer, 2008).

    MATH  Google Scholar 

  3. Ackemann, T., Firth, W. J. & Oppo, G. in Advances in Atomic Molecular, and Optical Physics Vol. 57 (eds Arimondo, E., Berman, P. R. & Lin, C. C.) 323–421 (Academic Press, 2009).

    Book  Google Scholar 

  4. Descalzi, O., Clerc, M., Residori, S. & Assanto, G. (eds) Localized States in Physics: Solitons and Patterns (Springer, 2011).

    Book  Google Scholar 

  5. Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nature Photon. 6, 84–92 (2012).

    Article  ADS  Google Scholar 

  6. Fauve, S. & Thual, O. Solitary waves generated by subcritical instabilities in dissipative systems. Phys. Rev. Lett. 64, 282–284 (1990).

    Article  ADS  Google Scholar 

  7. Rosanov, N. N. & Khodova, G. V. Autosolitons in bistable interferometers. Opt. Spectrosc. 65, 449–450 (1988).

    ADS  Google Scholar 

  8. Tlidi, M., Mandel, P. & Lefever, R. Localized structures and localized patterns in optical bistability. Phys. Rev. Lett. 73, 640–643 (1994).

    Article  ADS  Google Scholar 

  9. Firth, W. J. & Scroggie, A. J. Optical bullet holes: robust controllable localized states of a nonlinear cavity. Phys. Rev. Lett. 76, 1623–1626 (1996).

    Article  ADS  Google Scholar 

  10. Barland, S. et al. Cavity solitons as pixels in semiconductor microcavities. Nature 419, 699–702 (2002).

    Article  ADS  Google Scholar 

  11. Lugiato, L. Introduction to the feature section on cavity solitons: an overview. IEEE J. Quantum Electron. 39, 193–196 (2003).

    Article  ADS  Google Scholar 

  12. Coullet, P., Riera, C. & Tresser, C. Stable static localized structures in one dimension. Phys. Rev. Lett. 84, 3069–3072 (2000).

    Article  ADS  Google Scholar 

  13. Nicolis, G. & Prigogine, I. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations (Wiley, 1977).

    MATH  Google Scholar 

  14. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nature Photon. 4, 471–476 (2010).

    Article  ADS  Google Scholar 

  15. Elsass, T. et al. Fast manipulation of laser localized structures in a monolithic vertical cavity with saturable absorber. Appl. Phys. B 98, 327–331 (2010).

    Article  ADS  Google Scholar 

  16. Genevet, P., Barland, S., Giudici, M. & Tredicce, J. R. Cavity soliton laser based on mutually coupled semiconductor microresonators. Phys. Rev. Lett. 101, 123905 (2008).

    Article  ADS  Google Scholar 

  17. Tang, D. Y., Man, W. S., Tam, H. Y. & Drummond, P. D. Observation of bound states of solitons in a passively mode-locked fiber laser. Phys. Rev. A 64, 033814 (2001).

    Article  ADS  Google Scholar 

  18. Grelu, P. & Soto-Crespo, J. in Dissipative Solitons: From Optics to Biology and Medicine (eds Akhmediev, N. & Ankiewicz, A) 1–37 (Springer, 2008).

    Book  Google Scholar 

  19. Jang, J. K., Erkintalo, M., Murdoch, S. G. & Coen, S. Ultraweak long-range interactions of solitons observed over astronomical distances. Nature Photon. 7, 657–663 (2013).

    Article  ADS  Google Scholar 

  20. Chouli, S. & Grelu, P. Soliton rains in a fiber laser: an experimental study. Phys. Rev. A 81, 063829 (2010).

    Article  ADS  Google Scholar 

  21. Cundiff, S. T., Soto-Crespo, J. M. & Akhmediev, N. Experimental evidence for soliton explosions. Phys. Rev. Lett. 88, 073903 (2002).

    Article  ADS  Google Scholar 

  22. Kang, J. U., Stegeman, G. I., Aitchison, J. S. & Akhmediev, N. Observation of Manakov spatial solitons in AlGaAs planar waveguides. Phys. Rev. Lett. 76, 3699–3702 (1996).

    Article  ADS  Google Scholar 

  23. Williams, Q. L., García-Ojalvo, J. & Roy, R. Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: inclusion of stochastic effects. Phys. Rev. A 55, 2376–2386 (1997).

    Article  ADS  Google Scholar 

  24. Zhang, H., Tang, D. Y., Zhao, L. M. & Wu, X. Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers. Phys. Rev. B 80, 052302 (2009).

    Article  ADS  Google Scholar 

  25. Lecaplain, C., Grelu, P. & Wabnitz, S. Polarization-domain-wall complexes in fiber lasers. J. Opt. Soc. Am. B 30, 211–218 (2013).

    Article  ADS  Google Scholar 

  26. Choquette, K. D., Richie, D. A. & Leibenguth, R. E. Temperature dependence of gain-guided vertical-cavity surface emitting laser polarization. Appl. Phys. Lett. 64, 2062–2064 (1994).

    Article  ADS  Google Scholar 

  27. Choquette, K., Schneider, R., Lear, K. & Leibenguth, R. Gain-dependent polarization properties of vertical-cavity lasers. IEEE J. Sel. Top. Quantum Electron. 1, 661–666 (1995).

    Article  ADS  Google Scholar 

  28. Marino, F., Furfaro, L. & Balle, S. Cross-gain modulation in broad-area vertical-cavity semiconductor optical amplifier. Appl. Phys. Lett. 86, 151116 (2005).

    Article  ADS  Google Scholar 

  29. Virte, M., Panajotov, K., Thienpont, H. & Sciamanna, M. Deterministic polarization chaos from a laser diode. Nature Photon. 7, 60–65 (2013).

    Article  ADS  Google Scholar 

  30. Giacomelli, G. & Politi, A. Relationship between delayed and spatially extended dynamical systems. Phys. Rev. Lett. 76, 2686–2689 (1996).

    Article  ADS  Google Scholar 

  31. Javaloyes, J. & Balle, S. Multimode dynamics in bidirectional laser cavities by folding space into time delay. Opt. Express 20, 8496–8502 (2012).

    Article  ADS  Google Scholar 

  32. Perez-Serrano, A., Javaloyes, J. & Balle, S. Spectral delay algebraic equation approach to broad area laser diodes. IEEE Sel. J. Top. Quantum Electron. 19, 1502808 (2013).

    Article  Google Scholar 

  33. Marconi, M., Javaloyes, J., Barland, S., Giudici, M. & Balle, S. Robust square-wave polarization switching in vertical-cavity surface-emitting lasers. Phys. Rev. A 87, 013827 (2013).

    Article  ADS  Google Scholar 

  34. Javaloyes, J., Marconi, M. & Giudici, M. Phase dynamics in vertical-cavity surface-emitting lasers with delayed optical feedback and cross-polarized reinjection. Phys. Rev. A 90, 023838 (2014).

    Article  ADS  Google Scholar 

  35. Javaloyes, J., Mulet, J. & Balle, S. Passive mode locking of lasers by crossed-polarization gain modulation. Phys. Rev. Lett. 97, 163902 (2006).

    Article  ADS  Google Scholar 

  36. Arecchi, F. T., Giacomelli, G., Lapucci, A. & Meucci, R. Two-dimensional representation of a delayed dynamical system. Phys. Rev. A 45, R4225–R4228 (1992).

    Article  ADS  Google Scholar 

  37. Bödeker, H. U. et al. Noise-covered drift bifurcation of dissipative solitons in a planar gas-discharge system. Phys. Rev. E 67, 056220 (2003).

    Article  ADS  Google Scholar 

  38. Kartashov, Y. V., Vysloukh, V. A. & Torner, L. Brownian soliton motion. Phys. Rev. A 77, 051802 (2008).

    Article  ADS  Google Scholar 

  39. San Miguel, M., Feng, Q. & Moloney, J. V. Light-polarization dynamics in surface-emitting semiconductor lasers. Phys. Rev. A 52, 1728–1739 (1995).

    Article  ADS  Google Scholar 

  40. Klausmeier, C. A. Floquet theory: a useful tool for understanding nonequilibrium dynamics. Theor. Ecol. 1, 153–161 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

J.J. acknowledges financial support from the Ramón y Cajal fellowship and useful discussions with B. Krauskopf. J.J. and S.B. acknowledge financial support from project RANGER (TEC2012-38864-C03-01). M.G. acknowledges discussions with G. Giacomelli and C. Miniatura. The INLN group acknowledges funding from Région Provence-Alpes-Cote d'Azur with the “Projet Volet Général 2011: Génération et Détection des Impulsions Ultra Rapides (GEDEPULSE)”, project ANR “OPTIROC” and project ANR – Jeunes Chercheurs “MOLOSSE”.

Author information

Authors and Affiliations

Authors

Contributions

M.M. performed the experimental characterization under the supervision of M.G. and assisted by S. Barland. M.M., S.B. and M.G. performed the statistical analysis of the experimental data. J.J. developed the theoretical and the numerical analysis and wrote the manuscript together with S.B. and M.G. All the authors participated in the interpretation of the results.

Corresponding author

Correspondence to M. Giudici.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 28047 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marconi, M., Javaloyes, J., Barland, S. et al. Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays. Nature Photon 9, 450–455 (2015). https://doi.org/10.1038/nphoton.2015.92

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.92

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing