Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Limitations of nonlinear optical isolators due to dynamic reciprocity

Abstract

Motivated by the demands of integrated and silicon photonics, there is significant interest in optical isolators in on-chip integrated systems. Recent works have therefore explored nonlinear optical isolators and demonstrated non-reciprocal transmission contrast when waves are injected in forward or backward directions1,2,3,4,5,6,7,8. However, whether such nonlinear isolators can provide complete isolation under practical operating conditions remains an open question. Here, we analytically prove and numerically demonstrate a dynamic reciprocity in nonlinear optical isolators based on Kerr or Kerr-like nonlinearity. We show that, when a signal is transmitting through, such isolators are constrained by a reciprocity relation for a class of small-amplitude additional waves and, as a result, cannot provide isolation for arbitrary backward-propagating noise. This result points to an important limitation on the use of nonlinear optical isolators for signal processing and for laser protection.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Operating principle for a nonlinear optical isolator.
Figure 2: Frequency spectra of various input waves for a nonlinear optical isolator.
Figure 3: Simulation of a nonlinear optical isolator.
Figure 4: Numerical demonstration of dynamic reciprocity.

References

  1. Fan, L. et al. An all-silicon passive optical diode. Science 335, 447–450 (2012).

    Article  ADS  Google Scholar 

  2. Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nature Phys. 10, 394–398 (2014).

    Article  ADS  Google Scholar 

  3. Chang, L. et al. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nature Photon. 8, 524–529 (2014).

    Article  ADS  Google Scholar 

  4. Wang, J. et al. A theoretical model for an optical diode built with nonlinear silicon microrings. J. Lightw. Technol. 31, 313–321 (2013).

    Article  ADS  Google Scholar 

  5. Miroshnichenko, A., Brasselet, E. & Kivshar, Y. Reversible optical nonreciprocity in periodic structures with liquid crystals. Appl. Phys. Lett. 96, 063302 (2010).

    Article  ADS  Google Scholar 

  6. Bender, N. et al. Observation of asymmetric transport in structures with active nonlinearities. Phys. Rev. Lett. 110, 234101 (2013).

    Article  ADS  Google Scholar 

  7. Nazari, F. et al. Optical isolation via PT-symmetric nonlinear Fano resonances. Opt. Express 22, 9574–9584 (2014).

    Article  ADS  Google Scholar 

  8. Fan, L. et al. Silicon optical diode with 40 dB nonreciprocal transmission. Opt. Lett. 38, 1259–1261 (2013).

    Article  ADS  Google Scholar 

  9. Jalas, D. et al. What is—and what is not—an optical isolator. Nature Photon. 7, 579–582 (2013).

    Article  ADS  Google Scholar 

  10. Fan, S. et al. Comment on ‘Nonreciprocal light propagation in a silicon photonic circuit’. Science 335, 38 (2012).

    Google Scholar 

  11. Iwamura, H., Hayashi, S. & Iwasaki, H. A compact optical isolator using a Y3Fe5O12 crystal for near infra-red radiation. Opt. Quantum Electron. 10, 393–398 (1978).

    Article  Google Scholar 

  12. Shiraishi, K., Sugaya, S. & Kawakami, S. Fiber Faraday rotator. Appl. Opt. 23, 1103–1106 (1984).

    Article  ADS  Google Scholar 

  13. Gauthier, D., Narum, P. & Boyd, R. Simple, compact, high-performance permanent-magnet Faraday isolator. Opt. Lett. 11, 623–625 (1986).

    Article  ADS  Google Scholar 

  14. Shoji, Y., Mizumoto, T., Yokoi, H., Hsieh, I. & Osgood, R. Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Appl. Phys. Lett. 92, 071117 (2008).

    Article  ADS  Google Scholar 

  15. Tien, M., Mizumoto, T., Pintus, P., Kromer, H. & Bowers, J. Silicon ring isolators with bonded nonreciprocal magneto-optic garnets. Opt. Express 19, 11740–11745 (2011).

    Article  ADS  Google Scholar 

  16. Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nature Photon. 5, 758–762 (2011).

    Article  ADS  Google Scholar 

  17. Ghosh, S. et al. Ce:YIG/silicon-on-insulator waveguide optical isolator realized by adhesive bonding. Opt. Express 20, 1839–1848 (2012).

    Article  ADS  Google Scholar 

  18. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nature Photon. 3, 91–94 (2009).

    Article  ADS  Google Scholar 

  19. Kang, M. S., Butsch, A. & Russel, P. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nature Photon. 5, 549–553 (2011).

    Article  ADS  Google Scholar 

  20. Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 33901 (2012).

    Article  ADS  Google Scholar 

  21. Doerr, C. R., Dupius, N. & Zhang, L. Optical isolator using two tandem phase modulators. Opt. Lett. 36, 4293–4295 (2011).

    Article  ADS  Google Scholar 

  22. Doerr, C. R., Chen, L. & Vermeulen, D. Silicon photonics broadband modulation-based isolator. Opt. Express 22, 4493–4498 (2014).

    Article  ADS  Google Scholar 

  23. Yu, Z. & Fan, S. Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions. Appl. Phys. Lett. 94, 171116 (2009).

    Article  ADS  Google Scholar 

  24. Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

    Article  ADS  Google Scholar 

  25. Tzuang, L., Fang, K., Nussenzveig, P., Fan, S. & Lipson, M. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nature Photon. 8, 701–705 (2014).

    Article  ADS  Google Scholar 

  26. Li, E., Eggleton, B., Fang, K. & Fan, S. Photonic Aharonov–Bohm effect in photon–phonon interactions. Nature Commun. 5, 3225 (2014).

    Article  ADS  Google Scholar 

  27. Sounas, D. L., Caloz, C. & Alu, A. Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials. Nature Commun. 4, 2407 (2013).

    Article  ADS  Google Scholar 

  28. Boyd, R. Nonlinear Optics 3rd edn (Academic, 2008).

    Google Scholar 

  29. Siegman, A. E. Lasers Ch. 29 (University Science Books, 1986).

    Google Scholar 

  30. Berenger, J. P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  31. Reinke, C. et al. Nonlinear finite-difference time-domain method for the simulation of anistropic, χ(2), and χ(3) optical effects. J. Lightw. Technol. 24, 624–634 (2006).

    Article  ADS  Google Scholar 

  32. Gallo, K., Assanto, G., Parameswaran, K. R. & Fejer, M. M. All-optical diode in a periodically poled lithium niobate waveguide. Appl. Phys. Lett. 79, 314–316 (2001).

    Article  ADS  Google Scholar 

  33. Huang, X. & Fan, S. Complete all-optical silica fiber isolator via stimulated Brilliouin scattering. J. Lightw. Technol. 29, 2267–2275 (2011).

    Article  ADS  Google Scholar 

  34. Poulton, C. et al. Design for broadband on-chip isolator using stimulated Brilliouin scattering in dispersion-engineered chalcogenide waveguides. Opt. Express 20, 21236 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US Air Force Office of Scientific Research (grant no. FA9550-09-1-0704) and the US National Science Foundation (grant no. ECCS-1201914). Y.S. also acknowledges the support of a Stanford Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Y.S., Z.Y. and S.F. designed the study and contributed to the analytic derivation. Y.S. wrote the numerical code and performed the simulation. Y.S. and S.F. wrote the manuscript with input from Z.Y., and S.F. supervised the project.

Corresponding author

Correspondence to Shanhui Fan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 374 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Yu, Z. & Fan, S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nature Photon 9, 388–392 (2015). https://doi.org/10.1038/nphoton.2015.79

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.79

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing