Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synchronized pulses generated at 20 eV and 90 eV for attosecond pump–probe experiments

Abstract

The development of attosecond pulses across different photon energies is an essential precursor to performing pump–probe attosecond experiments in complex systems, where the potential of attosecond science1 can be further developed2,3. We report the generation and characterization of synchronized extreme ultraviolet (90 eV) and vacuum ultraviolet (20 eV) pulses, generated simultaneously via high-harmonic generation. The vacuum ultraviolet pulses are well suited for pump–probe experiments that exploit the high photo-ionization cross-sections of many molecules in this spectral region4 as well as the higher photon flux due to the higher conversion efficiency of the high harmonic generation process at these energies5. We temporally characterized all pulses using the attosecond streaking technique6 and the FROG-CRAB retrieval method7. We report 576 ± 16 as pulses at 20 eV and 257 ± 21 as pulses at 90 eV. Our demonstration of synchronized attosecond pulses at different photon energies, which are inherently jitter-free due to the common-path geometry implemented, offers unprecedented possibilities for pump–probe studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geometry for the production of simultaneous attosecond XUV and VUV pulses.
Figure 2: XUV pulse characterization.
Figure 3: VUV pulse characterization.

Similar content being viewed by others

References

  1. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  2. Dutoi, A. D. & Cederbaum, L. S. Time-resolved pump–probe spectroscopy to follow valence electronic motion in molecules: application. Phys. Rev. A 90, 023414 (2014).

    Article  ADS  Google Scholar 

  3. Tzallas, P., Skantzakis, E., Nikolopoulos, L. A. A., Tsakiris, G. D. & Charalambidis, D. Extreme-ultraviolet pump–probe studies of one-femtosecond-scale electron dynamics. Nature Phys. 7, 781–784 (2011).

    Article  ADS  Google Scholar 

  4. Kameta, K., Kouchi, N., Ukai, M. & Hatano, Y. Photoabsorption, photoionization, and neutral-dissociation cross sections of simple hydrocarbons in the vacuum ultraviolet range. J. Electron Spectrosc. Relat. Phenom. 123, 225–238 (2002).

    Article  Google Scholar 

  5. L'Huillier, A., Schafer, K. J. & Kulander, K. C. Theoretical aspects of intense field harmonic generation. J. Phys. B 24, 3315 (1991).

    Article  ADS  Google Scholar 

  6. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article  ADS  Google Scholar 

  7. Mairesse, Y. & Quéré, F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 011401 (2005).

    Article  ADS  Google Scholar 

  8. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    Article  ADS  Google Scholar 

  9. Mashiko, H. et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Phys. Rev. Lett. 100, 103906 (2008).

    Article  ADS  Google Scholar 

  10. Ferrari, F. et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nature Photon. 4, 875–879 (2010).

    Article  ADS  Google Scholar 

  11. Witting, T. et al. Sub-4-fs laser pulse characterization by spatially resolved spectral shearing interferometry and attosecond streaking. J. Phys. B 45, 074014 (2012).

    Article  ADS  Google Scholar 

  12. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  13. Mashiko, H. et al. Tunable frequency-controlled isolated attosecond pulses characterized by either 750 nm or 400 nm wavelength streak fields. Opt. Express 18, 25887 (2010).

    Article  ADS  Google Scholar 

  14. Beutler, M., Ghotbi, M. & Noack, F. Generation of intense sub-20-fs vacuum ultraviolet pulses compressed by material dispersion. Opt. Lett. 36, 3726–3728 (2011).

    Article  ADS  Google Scholar 

  15. Graf, U. et al. Intense few-cycle light pulses in the deep ultraviolet. Opt. Express 16, 18956–18963 (2008).

    Article  ADS  Google Scholar 

  16. Reiter, F. et al. Generation of sub-3 fs pulses in the deep ultraviolet. Opt. Lett. 35, 2248–2250 (2010).

    Article  ADS  Google Scholar 

  17. Chini, M. et al. Coherent phase-matched VUV generation by field-controlled bound states. Nature Photon. 8, 437–441 (2014).

    Article  ADS  Google Scholar 

  18. Kim, K. T., Ko, D. H., Park, J., Tosa, V. & Nam, C. H. Complete temporal reconstruction of attosecond high-harmonic pulse trains. New J. Phys. 12, 083019 (2010).

    Article  Google Scholar 

  19. Russell, P. S. J., Hölzer, P., Chang, W., Abdolvand, A. & Travers, J. C. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nature Photon. 8, 278–286 (2014).

    Article  ADS  Google Scholar 

  20. Feng, X. et al. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers. Phys. Rev. Lett. 103, 183901 (2009).

    Article  ADS  Google Scholar 

  21. Henkel, J. et al. Prediction of attosecond light pulses in the VUV range in a high-order-harmonic-generation regime. Phys. Rev. A 87, 043818 (2013).

    Article  ADS  Google Scholar 

  22. Bothschafter, E. M. et al. Collinear generation of ultrashort UV and XUV pulses. Opt. Express 18, 9173–9180 (2010).

    Article  ADS  Google Scholar 

  23. Brizuela, F. et al. Efficient high-order harmonic generation boosted by below-threshold harmonics. Sci. Rep. 3, 1410 (2013).

    Article  Google Scholar 

  24. Frank, F. et al. Invited review article: technology for attosecond science. Rev. Sci. Instrum. 83, 071101 (2012).

    Article  ADS  Google Scholar 

  25. Gagnon, J., Goulielmakis, E. & Yakovlev, V. S. The accurate FROG characterization of attosecond pulses from streaking measurements. Appl. Phys. B 92, 25–32 (2008).

    Article  ADS  Google Scholar 

  26. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    Article  ADS  Google Scholar 

  27. Chini, M., Wang, H., Khan, S. D., Chen, S. & Chang, Z. Retrieval of satellite pulses of single isolated attosecond pulses. Appl. Phys. Lett. 94, 161112 (2009).

    Article  ADS  Google Scholar 

  28. Palatchi, C. et al. Atomic delay in helium, neon, argon and krypton. J. Phys. B 47, 245003 (2014).

    Article  ADS  Google Scholar 

  29. Robinson, J. S. et al. The generation of intense, transform-limited laser pulses with tunable duration from 6 to 30 fs in a differentially pumped hollow fibre. Appl. Phys. B 85, 525–529 (2006).

    Article  ADS  Google Scholar 

  30. Okell, W. A. et al. Carrier-envelope phase stability of hollow fibers used for high-energy few-cycle pulse generation. Opt. Lett. 38, 3918–3921 (2013).

    Article  ADS  Google Scholar 

  31. Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 54, 181–342 (1993).

    Article  ADS  Google Scholar 

  32. Lynch, D. W. & Hunter, W. R. in Handbook of Optical Constants of Solids (ed. Palik, E. D.) 233–286 (Academic, 1997).

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Engineering and Physical Sciences Research Council (EPSRC) through grant (UK)EP/I032517/1, by the European Research Council (ERC) through ASTEX project 290467, and by the Deutsche Forschungsgemeinschaft through grant no. LE 2163/6-1. The authors thank N. Powell, A. Gregory and P. Ruthven for technical support.

Author information

Authors and Affiliations

Authors

Contributions

D.F. and T.W. contributed equally as first authors. D.F. and T.W. performed (with contributions from W.A.O.) the streaking experiments. J.W.G.T. and J.P.M. conceived and designed the experiment. P.M.-H. and D.J.W. performed the absolute photon flux calibration. J.H. and M.L. provided the TDSE calculations and theoretical support. D.F. performed the analysis of the data. D.F., J.W.G.T. and J.P.M. wrote the manuscript with contributions from T.W., T.R.B., J.H. and W.A.O. All authors discussed the results and the analysis of the data.

Corresponding author

Correspondence to J. W. G. Tisch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 330 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabris, D., Witting, T., Okell, W. et al. Synchronized pulses generated at 20 eV and 90 eV for attosecond pump–probe experiments. Nature Photon 9, 383–387 (2015). https://doi.org/10.1038/nphoton.2015.77

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.77

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing