Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gravitational and relativistic deflection of X-ray superradiance

Abstract

Einstein predicted that clocks at different altitudes tick at various rates under the influence of gravity. This effect has been observed using 57Fe Mössbauer spectroscopy over an elevation of 22.5 m (ref. 1) or by comparing accurate optical clocks at different heights on a submetre scale2. However, challenges remain in finding novel methods for the detection of gravitational and relativistic effects on more compact scales. Here, we investigate a scheme that potentially allows for millimetre- to submillimetre-scale studies of the gravitational redshift by probing a nuclear crystal with X-rays. Also, a rotating crystal can force interacting X-rays to experience inhomogeneous clock tick rates within it. We find that an association of gravitational redshift and special-relativistic time dilation with quantum interference is manifested by a time-dependent deflection of X-rays. The scheme suggests a table-top solution for probing gravitational and special-relativistic effects, which should be within the reach of current experimental technology3,4,5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Superradiant single photon.
Figure 2: Gravitational deflection of X-ray superradiance.
Figure 3: X-ray superradiance under the influence of special relativity.

Similar content being viewed by others

References

  1. Pound, R. V. & Rebka, G. A. Apparent weight of photons. Phys. Rev. Lett. 4, 337–341 (1960).

    Article  ADS  Google Scholar 

  2. Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. Optical clocks and relativity. Science 329, 1630–1633 (2010).

    Article  ADS  Google Scholar 

  3. Altarelli, M. et al. XFEL: The European X-Ray Free-Electron Laser. Technical Design Report (DESY, 2006).

    Google Scholar 

  4. Röhlsberger, R. Nuclear Condensed Matter Physics with Synchrotron Radiation: Basic Principles, Methodology and Applications (Springer-Verlag, 2004).

    Google Scholar 

  5. Shvyd'ko, Y. X-Ray Optics: High-Energy-Resolution Applications (Springer-Verlag, 2004).

    Book  Google Scholar 

  6. Shvyd'ko, Y., Stoupin, S., Blank, V. & Terentyev, S. Near-100% Bragg reflectivity of X-rays. Nature Photon. 5, 539–542 (2011).

    Article  ADS  Google Scholar 

  7. Adams, B. W. et al. X-ray quantum optics. J. Mod. Opt. 60, 2–21 (2013).

    Article  ADS  Google Scholar 

  8. Glover, T. et al. Controlling X-rays with light. Nature Phys. 6, 69–74 (2010).

    Article  ADS  Google Scholar 

  9. Rohringer, N. et al. Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature 481, 488–491 (2012).

    Article  ADS  Google Scholar 

  10. Vagizov, F., Antonov, V., Radeonychev, Y., Shakhmuratov, R. & Kocharovskaya, O. Coherent control of the waveforms of recoilless γ-ray photons. Nature 508, 80–83 (2014).

    Article  ADS  Google Scholar 

  11. Röhlsberger, R., Wille, H.-C., Schlage, K. & Sahoo, B. Electromagnetically induced transparency with resonant nuclei in a cavity. Nature 482, 199–203 (2012).

    Article  ADS  Google Scholar 

  12. Röhlsberger, R., Schlage, K., Sahoo, B., Couet, S. & Rüffer, R. Collective Lamb shift in single-photon superradiance. Science 328, 1248–1251 (2010).

    Article  ADS  Google Scholar 

  13. Heeg, K. P. et al. Vacuum-assisted generation and control of atomic coherences at X-ray energies. Phys. Rev. Lett. 111, 073601 (2013).

    Article  ADS  Google Scholar 

  14. Liao, W.-T., Pálffy, A. & Keitel, C. H. Coherent storage and phase modulation of single hard-X-ray photons using nuclear excitons. Phys. Rev. Lett. 109, 197403 (2012).

    Article  ADS  Google Scholar 

  15. Cavaletto, S. M. et al. Broadband high-resolution X-ray frequency combs. Nature Photon. 8, 520–523 (2014).

    Article  ADS  Google Scholar 

  16. Shvyd'ko, Y. V. et al. Storage of nuclear excitation energy through magnetic switching. Phys. Rev. Lett. 77, 3232–3235 (1996).

    Article  ADS  Google Scholar 

  17. Hay, H. J., Schiffer, J. P., Cranshaw, T. E. & Egelstaff, P. A. Measurement of the red shift in an accelerated system using the Mössbauer effect in Fe57. Phys. Rev. Lett. 4, 165–166 (1960).

    Article  ADS  Google Scholar 

  18. Ives, H. E. & Stilwell, G. An experimental study of the rate of a moving atomic clock. J. Opt. Soc. Am. 28, 215–219 (1938).

    Article  ADS  Google Scholar 

  19. Reinhardt, S. et al. Test of relativistic time dilation with fast optical atomic clocks at different velocities. Nature Phys. 3, 861–864 (2007).

    Article  ADS  Google Scholar 

  20. Campbell, C. J. et al. Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012).

    Article  ADS  Google Scholar 

  21. Derevianko, A., Dzuba, V. A. & Flambaum, V. V. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy. Phys. Rev. Lett. 109, 180801 (2012).

    Article  ADS  Google Scholar 

  22. Pikovski, I., Vanner, M. R., Aspelmeyer, M., Kim, M. S. & Brukner, Č. Probing Planck-scale physics with quantum optics. Nature Phys. 8, 393–397 (2012).

    Article  ADS  Google Scholar 

  23. Scully, M. O., Fry, E. S., Ooi, C. H. R. & Wódkiewicz, K. Directed spontaneous emission from an extended ensemble of N atoms: Timing is everything. Phys. Rev. Lett. 96, 010501 (2006).

    Article  ADS  Google Scholar 

  24. Dressel, J., Rajeev, S. G., Howell, J. C. & Jordan, A. N. Gravitational redshift and deflection of slow light. Phys. Rev. A 79, 013834 (2009).

    Article  ADS  Google Scholar 

  25. Karpa, L. & Weitz, M. A Stern–Gerlach experiment for slow light. Nature Phys. 2, 332–335 (2006).

    Article  ADS  Google Scholar 

  26. Kazakov, G. et al. Performance of a 229thorium solid-state nuclear clock. New J. Phys. 14, 083019 (2012).

    Article  ADS  Google Scholar 

  27. Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    Article  ADS  Google Scholar 

  28. Heinze, G., Hubrich, C. & Halfmann, T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Phys. Rev. Lett. 111, 033601 (2013).

    Article  ADS  Google Scholar 

  29. Neu, E. et al. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J. Phys. 13, 025012 (2011).

    Article  ADS  Google Scholar 

  30. 2014 Nuclear Structure and Decay Databases. (National Nuclear Data Center, 2014); http://www.nndc.bnl.gov/nudat2/indx_adopted.jsp

Download references

Acknowledgements

The authors thank C.H. Keitel, A. Pálffy, Z. Harman, E. Yakaboylu, S.M. Cavaletto, C. O'Brien, K. Heeg, M. Gärttner, T. Babinec, P. Hemmer and A. Svidzinsky for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

W.-T.L. and S.A. contributed equally to this work.

Corresponding author

Correspondence to Wen-Te Liao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, WT., Ahrens, S. Gravitational and relativistic deflection of X-ray superradiance. Nature Photon 9, 169–173 (2015). https://doi.org/10.1038/nphoton.2015.7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing