Single-beam spectrally controlled two-dimensional Raman spectroscopy

Abstract

Vibrational modes are often localized in certain regions of a molecule, and so the coupling between these modes is sensitive to the molecular structure. Two-dimensional vibrational spectroscopy can probe the strength of this coupling in a manner analogous to two-dimensional NMR spectroscopy, but on ultrafast timescales. Here, we demonstrate how two-dimensional Raman spectroscopy, based on fifth-order optical nonlinearity, can be performed with a single beam of shaped femtosecond optical pulses. Our spectroscopy scheme offers not only a major simplification of the conventional set-up, but also an inherent elimination of a competing nonlinear signal, which overwhelms the desired signal in other schemes and carries no coupling information.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Two-dimensional Raman spectroscopy: principle and single-beam implementation.
Figure 2: One-dimensional single-beam spectrally controlled stimulated Raman spectroscopy: experimental results.
Figure 3: Spectral control and spectrally-resolved detection of the fifth-order Raman process.
Figure 4: Two-dimensional single-beam spectrally controlled Raman spectroscopy: experimental results.
Figure 5: Comparison of the two signal-processing methods used to extract cross-peak information.

References

  1. 1

    Hybl, J. D., Albrecht Ferro, A. & Jonas, D. M. Two-dimensional Fourier transform electronic spectroscopy. J. Chem. Phys. 115, 6606–6622 (2001).

    ADS  Article  Google Scholar 

  2. 2

    Brixner, T. et al. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005).

    ADS  Article  Google Scholar 

  3. 3

    Tian, P., Keusters, D., Suzaki, Y. & Warren, W. S. Femtosecond phase-coherent two-dimensional spectroscopy. Science 300, 1553–1555 (2003).

    ADS  Article  Google Scholar 

  4. 4

    Grumstrup, E. M., Shim, S. H., Montgomery, M. A., Damrauer, N. H. & Zanni, M. T. Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology. Opt. Express 15, 16681–16690 (2007).

    ADS  Article  Google Scholar 

  5. 5

    Hornung, T., Vaughan, J. C., Feurer, T. & Nelson, K. A. Degenerate four-wave mixing spectroscopy based on two-dimensional femtosecond pulse shaping. Opt. Lett. 29, 2052–2054 (2004).

    ADS  Article  Google Scholar 

  6. 6

    Molesky, B. P., Giokas, P. G., Guo, Z. & Moran, A. M. Multidimensional resonance Raman spectroscopy by six-wave mixing in the deep UV. J. Chem. Phys. 141, 114202 (2014).

    ADS  Article  Google Scholar 

  7. 7

    Glenn, R. & Mukamel, S. Multidimensional spectroscopy with a single broadband phase-shaped laser pulse. J. Chem. Phys. 140, 144105 (2014).

    ADS  Article  Google Scholar 

  8. 8

    Baiz, C. R., Schach, D. & Tokmakoff, A. Ultrafast 2D IR microscopy. Opt. Express 22, 18724–18735 (2014).

    ADS  Article  Google Scholar 

  9. 9

    Kolano, C., Helbing, J., Kozinski, M., Sander, W. & Hamm, P. Watching hydrogen-bond dynamics in a beta-turn by transient two-dimensional infrared spectroscopy. Nature 444, 469–472 (2006).

    ADS  Article  Google Scholar 

  10. 10

    Asplund, M. C., Zanni, M. T. & Hochstrasser, R. M. Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes. Proc. Natl Acad. Sci. USA 97, 8219–8224 (2000).

    ADS  Article  Google Scholar 

  11. 11

    Krummel, A. T. & Zanni, M. T. DNA vibrational coupling revealed with two-dimensional infrared spectroscopy: insight into why vibrational spectroscopy is sensitive to DNA structure. J. Phys. Chem. B 110, 13991–14000 (2006).

    Article  Google Scholar 

  12. 12

    Fayer, M. D. Fast protein dynamics probed with infrared vibrational echo experiments. Annu. Rev. Phys. Chem. 52, 315–356 (2001).

    ADS  Article  Google Scholar 

  13. 13

    Tanimura, Y. & Mukamel, S. Two-dimensional femtosecond vibrational spectroscopy of liquids. J. Chem. Phys. 99, 9496–9511 (1993).

    ADS  Article  Google Scholar 

  14. 14

    Tokmakoff, A., Lang, M. J., Larsen, D. S. & Fleming, G. R. Two-dimensional Raman spectroscopy of vibrational interactions in liquids. Phys. Rev. Lett. 79, 2702–2705 (1997).

    ADS  Article  Google Scholar 

  15. 15

    Blank, D. A., Kaufman, L. J. & Fleming, G. R. Direct fifth-order electronically nonresonant Raman scattering from CS2 at room temperature. J. Chem. Phys. 113, 771–778 (2000).

    ADS  Article  Google Scholar 

  16. 16

    Mukamel, S., Piryatinski, A. & Chernyak, V. Two-dimensional Raman echoes: femtosecond view of molecular structure and vibrational coherence. Acc. Chem. Res. 32, 145–154 (1999).

    Article  Google Scholar 

  17. 17

    Okumura, K., Tokmakoff, A. & Tanimura, Y. Structural information from two-dimensional fifth-order Raman spectroscopy. J. Chem. Phys. 111, 492–503 (1999).

    ADS  Article  Google Scholar 

  18. 18

    Ulness, D. J., Kirkwood, J. C. & Albrecht, A. C. Competitive events in fifth order time resolved coherent Raman scattering: direct versus sequential processes. J. Chem. Phys. 108, 3897–3902 (1998).

    ADS  Article  Google Scholar 

  19. 19

    Blank, D. A., Kaufman, L. J. & Fleming, G. R. Fifth-order two-dimensional Raman spectra of CS2 are dominated by third-order cascades. J. Chem. Phys. 111, 3105–3114 (1999).

    ADS  Article  Google Scholar 

  20. 20

    Wilson, K. C., Lyons, B., Mehlenbacher, R., Sabatini, R. & McCamant, D. W. Two-dimensional femtosecond stimulated Raman spectroscopy: observation of cascading Raman signals in acetonitrile. J. Chem. Phys. 131, 214502 (2009).

    ADS  Article  Google Scholar 

  21. 21

    Dudovich, N., Oron, D. & Silberberg, Y. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512–514 (2002).

    ADS  Article  Google Scholar 

  22. 22

    Dudovich, N., Oron, D. & Silberberg, Y. Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region. J. Chem. Phys. 118, 9208–9215 (2003).

    ADS  Article  Google Scholar 

  23. 23

    Jang, H. U. et al. Interaction of a finite train of short pulses with an atomic ladder system. Phys. Rev. A 82, 043424 (2010).

    ADS  Article  Google Scholar 

  24. 24

    Pestov, D., Lozovoy, V. V. & Dantus, M. Multiple independent comb shaping (MICS): phase-only generation of optical pulse sequences. Opt. Express 17, 14351–14361 (2009).

    ADS  Article  Google Scholar 

  25. 25

    Frostig, H., Katz, O., Natan, A. & Silberberg, Y. Single-pulse stimulated Raman scattering spectroscopy. Opt. Lett. 36, 1248–1250 (2011).

    ADS  Article  Google Scholar 

  26. 26

    Duarte, M. F. & Eldar, Y. C. Structured compressed sensing: from theory to applications. IEEE Trans. Signal Process. 59, 4053–4085 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  27. 27

    Eldar, Y. C., Kuppinger, P. & Bolcskei, H. Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans. Signal Process. 58, 3042–3054 (2010).

    ADS  MathSciNet  Article  Google Scholar 

  28. 28

    Kaufman, L. J., Blank, D. A. & Fleming, G. R. Polarization selectivity in fifth-order electronically nonresonant Raman scattering from CS2 . J. Chem. Phys. 114, 2312–2331 (2001).

    ADS  Article  Google Scholar 

  29. 29

    Golonzka, O., Demirdoven, N., Khalil, M. & Tokmakoff, A. Separation of cascaded and direct fifth-order Raman signals using phase-sensitive intrinsic heterodyne detection. J. Chem. Phys. 113, 9893–9896 (2000).

    ADS  Article  Google Scholar 

  30. 30

    Cho, M. et al. Intrinsic cascading contributions to the fifth- and seventh-order electronically off-resonant Raman spectroscopies. J. Chem. Phys. 112, 2082–2094 (2000).

    ADS  Article  Google Scholar 

  31. 31

    Astinov, V., Kubarych, K. J., Milne, C. J. & Miller, R. J. D. Diffractive optics based two-color six-wave mixing: phase contrast heterodyne detection of the fifth order Raman response of liquids. Chem. Phys. Lett. 327, 334–342 (2000).

    ADS  Article  Google Scholar 

  32. 32

    Dunbar, J. A., Osborne, D. G., Anna, J. M. & Kubarych, K. J. Accelerated 2D-IR using compressed sensing. J. Phys. Chem. Lett. 4, 2489–2492 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank B. Bruner and L. Chuntonov for useful discussions. This work was supported by Icore (Israeli centres of research excellence of the ISF), the Crown Photonics Center, the Wolfson Foundation and the European ICT project FAMOS.

Author information

Affiliations

Authors

Contributions

H.F., T.B., N.D. and Y.S. designed the experiment, analysed the data and prepared the manuscript. H.F. and T.B. performed the experiment. Y.C.E. guided the BOMP analysis.

Corresponding author

Correspondence to Yaron Silberberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frostig, H., Bayer, T., Dudovich, N. et al. Single-beam spectrally controlled two-dimensional Raman spectroscopy. Nature Photon 9, 339–343 (2015). https://doi.org/10.1038/nphoton.2015.64

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing