Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Controllable spatiotemporal nonlinear effects in multimode fibres

Abstract

Multimode fibres are of interest for next-generation telecommunications systems and the construction of high-energy fibre lasers. However, relatively little work has explored nonlinear pulse propagation in multimode fibres. Here, we consider highly nonlinear ultrashort pulse propagation in the anomalous-dispersion regime of a graded-index multimode fibre. Low modal dispersion and strong nonlinear coupling between the fibre's many spatial modes result in interesting behaviour. We observe spatiotemporal effects reminiscent of nonlinear optics in bulk media—self-focusing and multiple filamentation1,2—at a fraction of the usual power. By adjusting the spatial initial conditions, we generate on-demand, megawatt, ultrashort pulses tunable between 1,550 and 2,200 nm; dispersive waves over one octave; intense combs of visible light; and a multi-octave-spanning supercontinuum. Our results indicate that multimode fibres present unique opportunities for observing new spatiotemporal dynamics and phenomena. They also enable the realization of a new type of tunable, broadband fibre source that could be useful for many applications.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Simulation results showing the spectral features of high-energy propagation in a multimode GRIN fibre.
Figure 2: Experimental results for optimizing effects in the spectral domain.
Figure 3: Spatiotemporal dynamics in multimode GRIN fibre.

References

  1. Couairon, A. & Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007).

    ADS  Article  Google Scholar 

  2. Eisenberg, H. et al. Kerr spatiotemporal self-focusing in a planar glass waveguide. Phys. Rev. Lett. 87, 043902 (2001).

    ADS  Article  Google Scholar 

  3. Hasegawa, A. Self-confinement of multimode optical pulse in a glass fiber. Opt. Lett. 5, 416–417 (1980).

    ADS  Article  Google Scholar 

  4. Crosignani, B. & Di Porto, P. Soliton propagation in multimode optical fibers. Opt. Lett. 6, 329–330 (1981).

    ADS  Article  Google Scholar 

  5. Yu, S. S., Chien, C.-H., Lai, Y. & Wang, J. Spatio-temporal solitary pulses in graded-index materials with Kerr nonlinearity. Opt. Commun. 119, 167–170 (1995).

    ADS  Article  Google Scholar 

  6. Mafi, A. Pulse propagation in a short nonlinear graded-index multimode optical fiber. J. Lightw. Technol. 30, 2803–2811 (2012).

    ADS  Article  Google Scholar 

  7. Poletti, F. & Horak, P. Description of ultrashort pulse propagation in multimode optical fibers. J. Opt. Soc. Am. B 25, 1645–1654 (2008).

    ADS  Article  Google Scholar 

  8. Kivshar, Y. S. & Agrawal, G. P. Optical Solitons: From Fibers to Photonic Crystals 1st edn (Academic, 2003).

    Google Scholar 

  9. Baldeck, P. L., Raccah, F. & Alfano, R. R. Observation of self-focusing in optical fibers with picosecond pulses. Opt. Lett. 12, 588–589 (1987).

    ADS  Article  Google Scholar 

  10. Grudinin, A. B., Dianov, E. M., Korbkin, D. V., Prokhorov, A. M. & Khaıˇǐdarov, D. V. Nonlinear mode coupling in multimode optical fibers; excitation of femtosecond-range stimulated-Raman-scattering solitons. J. Exp. Theor. Phys. Lett. 47, 356–359 (1988).

    Google Scholar 

  11. Pourbeyram, H., Agrawal, G. P. & Mafi, A. Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber. Appl. Phys. Lett. 102, 201107 (2013).

    ADS  Article  Google Scholar 

  12. Stolen, R. H. Phase-matched three-wave mixing in silica fiber optical waveguides. Appl. Phys. Lett. 24, 308 (1974).

    ADS  Article  Google Scholar 

  13. Cheng, J. et al. Intermodal Čerenkov radiation in a higher-order-mode fiber. Opt. Lett. 37, 4410–4412 (2012).

    ADS  Article  Google Scholar 

  14. Ramsay, J. et al. Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers. Opt. Express 21, 10764–10771 (2013).

    ADS  Article  Google Scholar 

  15. Tani, F., Travers, J. C. & Russell, P. St. J. Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber. J. Opt. Soc. Am. B 31, 311–320 (2014).

    ADS  Article  Google Scholar 

  16. Russell, P. St. J., Hölzer, P., Chang, W., Abdolvand, A. & Travers, J. C. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nature Photon. 8, 278–286 (2014).

    ADS  Article  Google Scholar 

  17. Sims, R. A., Kadwani, P., Shah, A. S. L. & Richardson, M. 1 μJ, sub-500 fs chirped pulse amplification in a Tm-doped fiber system. Opt. Lett. 38, 121–123 (2013).

    ADS  Article  Google Scholar 

  18. Philbin, T. G. et al. Fiber-optical analog of the event horizon. Science 319, 1367–1370 (2008).

    ADS  Article  Google Scholar 

  19. Webb, K. E. et al. Nonlinear optics of fibre event horizons. Nature Commun. 5, 4969 (2014).

    ADS  Article  Google Scholar 

  20. Mollenauer, L. F. & Stolen, R. H. The soliton laser. Opt. Lett. 9, 13–15 (1984).

    ADS  Article  Google Scholar 

  21. Dudley, J. M., Dias, F., Erkintalo, M. & Genty, G. Instabilities, breathers and rogue waves in optics. Nature Photon. 8, 755–764 (2014).

    ADS  Article  Google Scholar 

  22. Wright, L. G., Renninger, W. H., Christodoulides, D. N. & Wise, F. W. Spatiotemporal dynamics of multimode optical solitons. Opt. Express 23, 3492–3506 (2015).

    ADS  Article  Google Scholar 

  23. Goldhar, J. & Murray, J. Intensity averaging and four-wave mixing in Raman amplifiers. IEEE J. Quantum Electron. 18, 399–409 (1982).

    ADS  Article  Google Scholar 

  24. Sun, L. & Marciante, J. R. Filamentation analysis in large-mode-area fiber lasers. J. Opt. Soc. Am. B 24, 2321–2326 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  25. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nature Photon. 6, 283–292 (2012).

    ADS  Article  Google Scholar 

  26. Petersen, C. R. et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photon. 8, 830–834 (2014).

    ADS  Article  Google Scholar 

  27. Winzer, P. J. Optical networking beyond WDM. IEEE Photon. J. 4, 647–651 (2012).

    ADS  Article  Google Scholar 

  28. Richardson, D. J., Fini, J. M. & Nelson, L. E. Space-division multiplexing in optical fibres. Nature Photon. 7, 354–362 (2013).

    ADS  Article  Google Scholar 

  29. Picozzi, A. et al. Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys. Rep. 542, 1–132 (2014).

    ADS  MathSciNet  Article  Google Scholar 

  30. Fang, X. et al. Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber. Opt. Lett. 37, 2292–2294 (2012).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Portions of this work were funded by the Office of Naval Research (grant no. N00014-13-1-0649). L.G.W. acknowledges support from NSERC and thanks E. Lamb for taking the photograph in Fig. 2n. The authors thank C. Xu for the loan of the laser used in the experiments and W. Renninger and A. Mafi for discussions.

Author information

Authors and Affiliations

Authors

Contributions

L.G.W. performed experiments and simulations. L.G.W., D.N.C. and F.W.W. wrote the manuscript.

Corresponding author

Correspondence to Logan G. Wright.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1242 kb)

Supplementary information

Supplementary movie (MOV 4324 kb)

Supplementary information

Supplementary movie (MOV 4260 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wright, L., Christodoulides, D. & Wise, F. Controllable spatiotemporal nonlinear effects in multimode fibres. Nature Photon 9, 306–310 (2015). https://doi.org/10.1038/nphoton.2015.61

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.61

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing