Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemically sensitive bioimaging with coherent Raman scattering

Abstract

Raman scattering provides an intrinsic fingerprint of chemical composition. Spontaneous Raman spectroscopy has been used for many decades to interrogate biological materials and systems. In spite of its valuable information content, Raman imaging is rarely used compared with modalities such as fluorescence microscopy because of its relatively slow signal acquisition. Coherent Raman imaging technologies have evolved over the past fifteen years to now capture rich chemical information with improved acquisition speeds. As a result, coherent Raman imaging methods are now poised to begin emerging as widely used tools for obtaining functional information in a label-free manner from biological systems. We briefly review the development and application of these methods.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Spontaneous Raman spectrum of a single human cell.
Figure 2: CRI bioimaging development milestones and current performance.
Figure 3: Spontaneous and coherent Raman scattering mechanisms.
Figure 4: Energy diagrams of select coherent Raman mechanisms.
Figure 5: Demonstration of bioimaging with select CARS modalities.
Figure 6: Demonstration of bioimaging with select SRS modalities.

References

  1. 1

    Chan, J. W. & Lieu, D. K. Label-free biochemical characterization of stem cells using vibrational spectroscopy. J. Biophoton. 2, 656–668 (2009).

    Article  Google Scholar 

  2. 2

    Notingher, I. et al. In situ spectral monitoring of mRNA translation in embryonic stem cells during differentiation in vitro. Anal. Chem. 76, 3185–3193 (2004).

    Article  Google Scholar 

  3. 3

    Notingher, I., Jell, G., Lohbauer, U., Salih, V. & Hench, L. L. In situ non-invasive spectral discrimination between bone cell phenotypes used in tissue engineering. J. Cell. Biochem. 92, 1180–1192 (2004).

    Article  Google Scholar 

  4. 4

    Bakker Schut, T. C., Wolthuis, R., Caspers, P. J. & Puppels, G. J. Real-time tissue characterization on the basis of in vivo Raman spectra. J. Raman Spectrosc. 33, 580–585 (2002).

    ADS  Article  Google Scholar 

  5. 5

    Gentleman, E. et al. Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation. Nature Mater. 8, 763–770 (2009).

    ADS  Article  Google Scholar 

  6. 6

    Gniadecka, M. et al. Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue. J. Invest. Dermatol. 122, 443–449 (2004).

    Article  Google Scholar 

  7. 7

    Haka, A. S. et al. Diagnosing breast cancer by using Raman spectroscopy. Proc. Natl Acad. Sci. USA 102, 12371–12376 (2005).

    ADS  Article  Google Scholar 

  8. 8

    Krafft, C., Sobottka, S. B., Schackert, G. & Salzer, R. Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors. Analyst 130, 1070–1077 (2005).

    ADS  Article  Google Scholar 

  9. 9

    Krafft, C., Sobottka, S. B., Schackert, G. & Salzer, R. Raman and infrared spectroscopic mapping of human primary intracranial tumors: a comparative study. J. Raman Spectrosc. 37, 367–375 (2006).

    ADS  Article  Google Scholar 

  10. 10

    Pestov, D. et al. Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement. Opt. Lett. 32, 1725–1727 (2007).

    ADS  Article  Google Scholar 

  11. 11

    Saar, B. G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010).

    ADS  Article  Google Scholar 

  12. 12

    Evans, C. L. et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc. Natl Acad. Sci. USA 102, 16807–16812 (2005).

    ADS  Article  Google Scholar 

  13. 13

    Camp, C. H. Jr et al. High-speed coherent Raman fingerprint imaging of biological tissues. Nature Photon. 8, 627–634 (2014).

    ADS  Article  Google Scholar 

  14. 14

    Raman, C. V. A new radiation. Indian J. Phys. 398, 368–376 (1928).

    Google Scholar 

  15. 15

    Raman, C. V. & Krishnan, K. S. A new type of secondary radiation. Nature 121, 501–502 (1928).

    ADS  Article  Google Scholar 

  16. 16

    Smekal, A. Zur Quantentheorie der Dispersion. Naturwissenschaften 11, 873–875 (1923).

    ADS  Article  Google Scholar 

  17. 17

    Landsberg, G. & Mandelstam, L. Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen. Naturwissenschaften 16, 557–558 (1928).

    Article  Google Scholar 

  18. 18

    Schawlow, A. & Townes, C. Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958).

    ADS  Article  Google Scholar 

  19. 19

    Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).

    ADS  Article  Google Scholar 

  20. 20

    Denson, S. C., Pommier, C. J. S. & Denton, M. B. The impact of array detectors on Raman spectroscopy. J. Chem. Educ. 84, 67–74 (2007).

    Article  Google Scholar 

  21. 21

    Adar, F., Division, R. S., Ave, P. & Yvon, H. J. Evolution of instrumentation for detection of the Raman Effect as driven by available technologies and by developing applications. J. Chem. Educ. 84, 50–60 (2007).

    Article  Google Scholar 

  22. 22

    Koenig, J. L. Raman spectroscopy of biological molecules: A review. J. Polym. Sci. Macromol. Rev. 6, 59–177 (1972).

    Article  Google Scholar 

  23. 23

    Bergholt, M. S. et al. Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection. J. Biomed. Opt. 16, 037003 (2011).

    ADS  Article  Google Scholar 

  24. 24

    Bergholt, M. S. Raman endoscopy for objective diagnosis of early cancer in the gastrointestinal system. J. Gastrointest. Dig. Syst. http://doi.org/3ns (2013).

  25. 25

    Bergholt, M. S. et al. Fiberoptic confocal raman spectroscopy for real-time in vivo diagnosis of dysplasia in Barrett's esophagus. Gastroenterology 146, 27–32 (2014).

    Article  Google Scholar 

  26. 26

    Lieber, C. A., Majumder, S. K., Ellis, D. L., Billheimer, D. D. & Mahadevan-Jansen, A. In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy. Lasers Surg. Med. 40, 461–467 (2008).

    Article  Google Scholar 

  27. 27

    Nijssen, A. et al. Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy. J. Invest. Dermatol. 119, 64–69 (2002).

    Article  Google Scholar 

  28. 28

    Motz, J. T. et al. Real-time Raman system for in vivo disease diagnosis. J. Biomed. Opt. 10, 031113 (2005).

    ADS  Article  Google Scholar 

  29. 29

    Zumbusch, A., Holtom, G. & Xie, X. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 82, 4142–4145 (1999).

    ADS  Article  Google Scholar 

  30. 30

    Duncan, M. D., Reintjes, J. & Manuccia, T. J. Scanning coherent anti-Stokes Raman microscope. Opt. Lett. 7, 350–352 (1982).

    ADS  Article  Google Scholar 

  31. 31

    Nandakumar, P., Kovalev, A. & Volkmer, A. Vibrational imaging based on stimulated Raman scattering microscopy. New J. Phys. 11, 033026 (2009).

    ADS  Article  Google Scholar 

  32. 32

    Ozeki, Y., Dake, F., Kajiyama, S., Fukui, K. & Itoh, K. Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy. Opt. Express 17, 3651–3658 (2009).

    ADS  Article  Google Scholar 

  33. 33

    Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008).

    ADS  Article  Google Scholar 

  34. 34

    Ploetz, E., Laimgruber, S., Berner, S., Zinth, W. & Gilch, P. Femtosecond stimulated Raman microscopy. Appl. Phys. B 87, 389–393 (2007).

    ADS  Article  Google Scholar 

  35. 35

    Cheng, J-X., Volkmer, A., Book, L. D. & Xie, X. S. Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles. J. Phys. Chem. B 106, 8493–8498 (2002).

    Article  Google Scholar 

  36. 36

    Müller, M. & Schins, J. M. Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy. J. Phys. Chem. B 106, 3715–3723 (2002).

    Article  Google Scholar 

  37. 37

    Kee, T. W. & Cicerone, M. T. Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 29, 2701–2703 (2004).

    ADS  Article  Google Scholar 

  38. 38

    Kano, H. & Hamaguchi, H. Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber. Appl. Phys. Lett. 86, 121113 (2005).

    ADS  Article  Google Scholar 

  39. 39

    Volkmer, A., Book, L. D. & Xie, X. S. Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay. Appl. Phys. Lett. 80, 1505–1507 (2002).

    ADS  Article  Google Scholar 

  40. 40

    Ogilvie, J. P., Beaurepaire, E., Alexandrou, A. & Joffre, M. Fourier-transform coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 31, 480–482 (2006).

    ADS  Article  Google Scholar 

  41. 41

    Cui, M., Joffre, M., Skodack, J. & Ogilvie, J. P. Interferometric Fourier transform coherent anti-Stokes Raman scattering. Opt. Express 14, 8448–8458 (2006).

    ADS  Article  Google Scholar 

  42. 42

    Marks, D. & Boppart, S. A. Nonlinear interferometric vibrational imaging. Phys. Rev. Lett. 92, 123905 (2004).

    ADS  Article  Google Scholar 

  43. 43

    Jiang, Z., Marks, D. L., Geddes, J. B. III & Boppart, S. A. Nonlinear interferometric vibrational imaging of biological tissue. Proc. SPIE 6860, 68600Y (2008).

    ADS  Article  Google Scholar 

  44. 44

    Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355–358 (2013).

    ADS  Article  Google Scholar 

  45. 45

    Dudovich, N., Oron, D. & Silberberg, Y. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512–514 (2002).

    ADS  Article  Google Scholar 

  46. 46

    Bachler, B. R., Fermann, M. E. & Ogilvie, J. P. Multiplex Raman induced Kerr effect microscopy. Opt. Express 20, 835–844 (2012).

    ADS  Article  Google Scholar 

  47. 47

    Kumar, V. et al. Balanced-detection Raman-induced Kerr-effect spectroscopy. Phys. Rev. A 86, 053810 (2012).

    ADS  Article  Google Scholar 

  48. 48

    Freudiger, C. W. et al. Optical heterodyne-detected Raman-induced Kerr effect (OHD-RIKE) microscopy. J. Phys. Chem. B 115, 5574–5581 (2011).

    MathSciNet  Article  Google Scholar 

  49. 49

    Rock, W., Bonn, M. & Parekh, S. H. S. Near shot-noise limited hyperspectral stimulated Raman scattering spectroscopy using low energy lasers and a fast CMOS array. Opt. Express 21, 15113–15120 (2013).

    ADS  Article  Google Scholar 

  50. 50

    Zhang, X. et al. Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy. ChemPhysChem 13, 1054–1059 (2012).

    Article  Google Scholar 

  51. 51

    Agrawal, G. P. Nonlinear Fiber Optics (Academic, 2001).

    MATH  Google Scholar 

  52. 52

    Boyd, R. W. Nonlinear Optics (Academic, 2003).

    Google Scholar 

  53. 53

    Cheng, J-X., Volkmer, A. & Xie, X. S. Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy. J. Opt. Soc. Am. B 19, 1363 (2002).

    ADS  Article  Google Scholar 

  54. 54

    Potma, E. O. & Mukamel, S. in Coherent Raman Scattering Microscopy (eds Cheng, J-X. & Xie, X. S.) 3–42 (CRC, 2013).

    Google Scholar 

  55. 55

    Hellwarth, R. W. Third-order optical susceptibilities of liquids and solids. Prog. Quant. Electron. 5, 1–68 (1979).

    ADS  Article  Google Scholar 

  56. 56

    Konigstein, J. A. Introduction to the Theory of the Raman Effect (D Reidel, 1972).

    Book  Google Scholar 

  57. 57

    Long, D. A. Raman Spectroscopy (McGraw-Hill, 1977).

    Google Scholar 

  58. 58

    Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1995).

    Google Scholar 

  59. 59

    Tolles, W. M., Nibler, J. W., Mcdonald, J. R. & Harvey, A. B. A review of the theory and application of coherent anti-Stokes Raman spectroscopy (CARS). Appl. Spectrosc. 31, 253–271 (1977).

    ADS  Article  Google Scholar 

  60. 60

    Potma, E. O., Xie, X. S., Volkmer, A. & Cheng, J-X. in Coherent Raman Scattering Microscopy (eds Cheng, J-X. & Xie, X. S.) 43–78 (CRC, 2013).

    Google Scholar 

  61. 61

    Stevenson, T. L. & Vo-Dinh, T. in Modern Techniques in Raman Spectroscopy (ed. Laserna, J. J.) 1–40 (John Wiley & Sons, 1996).

    Google Scholar 

  62. 62

    Gomez, J. S. in Modern Techniques in Raman Spectroscopy (ed. Laserna, J. J.) 305–342 (John Wiley & Sons, 1996).

    Google Scholar 

  63. 63

    Zhang, D. et al. Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper. Opt. Express 21, 2641–2643 (2013).

    ADS  Google Scholar 

  64. 64

    Berto, P., Andresen, E. R. & Rigneault, H. Background-free stimulated Raman spectroscopy and microscopy. Phys. Rev. Lett. 112, 053905 (2014).

    ADS  Article  Google Scholar 

  65. 65

    Isobe, K. et al. Simultaneous imaging of two-photon absorption and stimulated Raman scattering by spatial overlap modulation nonlinear optical microscopy. Biomed. Opt. Express 4, 1548–1558 (2013).

    Article  Google Scholar 

  66. 66

    Hashimoto, M., Araki, T. & Kawata, S. Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration. Opt. Lett. 25, 1768–1770 (2000).

    ADS  Article  Google Scholar 

  67. 67

    Cheng, J-X., Book, L. D. & Xie, X. S. Polarization coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 26, 1341–1343 (2001).

    ADS  Article  Google Scholar 

  68. 68

    Garbacik, E. T. et al. Background-free nonlinear microspectroscopy with vibrational molecular interferometry. Phys. Rev. Lett. 107, 253902 (2011).

    ADS  Article  Google Scholar 

  69. 69

    Potma, E. O., Evans, C. L. & Xie, X. S. Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging. Opt. Lett. 31, 241–243 (2006).

    ADS  Article  Google Scholar 

  70. 70

    Evans, C. L. & Xie, X. S. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu. Rev. Anal. Chem. 1, 883–909 (2008).

    Article  Google Scholar 

  71. 71

    Scully, M. O. et al. FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores. Proc. Natl Acad. Sci. USA 99, 10994–11001 (2002).

    ADS  Article  Google Scholar 

  72. 72

    Hellerer, T., Enejder, A. M. K. & Zumbusch, A. Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses. Appl. Phys. Lett. 85, 25–27 (2004).

    ADS  Article  Google Scholar 

  73. 73

    Bégin, S. et al. Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system. Biomed. Opt. Express 2, 1296–1306 (2011).

    Article  Google Scholar 

  74. 74

    Pegoraro, A. F., Slepkov, A. D., Ridsdale, A., Moffatt, D. J. & Stolow, A. Hyperspectral multimodal CARS microscopy in the fingerprint region. J. Biophoton. 7, 49–58 (2014).

    Article  Google Scholar 

  75. 75

    Di Napoli, C. et al. Hyperspectral and differential CARS microscopy for quantitative chemical imaging in human adipocytes. Biomed. Opt. Express 5, 1378–1390 (2014).

    Article  Google Scholar 

  76. 76

    Kong, L. et al. Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator. Opt. Lett. 38, 145–147 (2013).

    ADS  Article  Google Scholar 

  77. 77

    Ozeki, Y. et al. High-speed molecular spectral imaging of tissue with stimulated Raman scattering. Nature Photon. 6, 845–851 (2012).

    ADS  Article  Google Scholar 

  78. 78

    Zhang, D. et al. Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis. Anal. Chem. 85, 98–106 (2013).

    Article  Google Scholar 

  79. 79

    Beier, H. T., Noojin, G. D. & Rockwell, B. A. Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications. Opt. Express 19, 18885–18892 (2011).

    ADS  Article  Google Scholar 

  80. 80

    Prince, B. D., Chakraborty, A., Prince, B. M. & Stauffer, H. U. Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra. J. Chem. Phys. 125, 44502 (2006).

    Article  Google Scholar 

  81. 81

    Pestov, D. et al. Optimizing the laser-pulse configuration for coherent Raman spectroscopy. Science 316, 265–268 (2007).

    ADS  Article  Google Scholar 

  82. 82

    Kano, H. & Hamaguchi, H. Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber. Appl. Phys. Lett. 85, 4298–4300 (2004).

    ADS  Article  Google Scholar 

  83. 83

    Lee, Y. J. & Cicerone, M. T. Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy. Appl. Phys. Lett. 92, 041108 (2008).

    ADS  Article  Google Scholar 

  84. 84

    Selm, R. et al. Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system. Opt. Lett. 35, 3282–3284 (2010).

    ADS  Article  Google Scholar 

  85. 85

    Benalcazar, W. A. et al. High-speed nonlinear interferometric vibrational imaging of biological tissue with comparison to Raman microscopy. IEEE J. Quantum Electron. 16, 824–832 (2009).

    Article  Google Scholar 

  86. 86

    Chowdary, P. D. et al. Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging. Cancer Res. 70, 9562–9569 (2010).

    Article  Google Scholar 

  87. 87

    Kano, H. & Hamaguchi, H-O. Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy. Opt. Express 13, 1322–1327 (2005).

    ADS  Article  Google Scholar 

  88. 88

    Cui, M., Bachler, B. R. & Ogilvie, J. P. Comparing coherent and spontaneous Raman scattering under biological imaging conditions. Opt. Lett. 34, 773–775 (2009).

    ADS  Article  Google Scholar 

  89. 89

    Vartiainen, E. M. Phase retrieval approach for coherent anti-Stokes Raman scattering spectrum analysis. J. Opt. Soc. Am. B 9, 1209–1214 (1992).

    ADS  Article  Google Scholar 

  90. 90

    Rinia, H. A., Bonn, M., Vartiainen, E. M., Schaffer, C. B. & Müller, M. Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering. J. Biomed. Opt. 11, 050502 (2006).

    ADS  Article  Google Scholar 

  91. 91

    Vartiainen, E. M., Rinia, H. A., Müller, M. & Bonn, M. Direct extraction of Raman line-shapes from congested CARS spectra. Opt. Express 14, 3622–3630 (2006).

    ADS  Article  Google Scholar 

  92. 92

    Rinia, H. A., Bonn, M., Müller, M. & Vartiainen, E. M. Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition. Chemphyschem 8, 279–287 (2007).

    Article  Google Scholar 

  93. 93

    Petrov, G. I. et al. Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores. Proc. Natl Acad. Sci. USA 104, 7776–7779 (2007).

    ADS  Article  Google Scholar 

  94. 94

    Rinia, H. A., Burger, K. N. J., Bonn, M. & Müller, M. Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy. Biophys. J. 95, 4908–4914 (2008).

    ADS  Article  Google Scholar 

  95. 95

    Pohling, C., Buckup, T., Pagenstecher, A. & Motzkus, M. Chemoselective imaging of mouse brain tissue via multiplex CARS microscopy. Biomed. Opt. Express 2, 2110–2116 (2011).

    Article  Google Scholar 

  96. 96

    Liu, Y., Lee, Y. J. & Cicerone, M. T. Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform. Opt. Lett. 34, 1363–1365 (2009).

    ADS  Article  Google Scholar 

  97. 97

    Cicerone, M. T., Aamer, K. A., Lee, Y. J. & Vartiainen, E. Maximum entropy and time-domain Kramers–Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy. J. Raman Spectrosc. 43, 637–643 (2012).

    ADS  Article  Google Scholar 

  98. 98

    Lee, Y. J., Moon, D., Migler, K. B. & Cicerone, M. T. Quantitative image analysis of broadband CARS hyperspectral images of polymer blends. Anal. Chem. 83, 2733–2739 (2011).

    Article  Google Scholar 

  99. 99

    Parekh, S. H., Lee, Y. J., Aamer, K. A. & Cicerone, M. T. Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy. Biophys. J. 99, 2695–2704 (2010).

    ADS  Article  Google Scholar 

  100. 100

    Rinia, H. A., Bonn, M. & Müller, M. Quantitative multiplex CARS spectroscopy in congested spectral regions. J. Phys. Chem. B 110, 4472–4479 (2006).

    Article  Google Scholar 

  101. 101

    Arora, R., Petrov, G. I., Yakovlev, V. V. & Scully, M. O. Detecting anthrax in the mail by coherent Raman microspectroscopy. Proc. Natl Acad. Sci. USA 109, 1151–1153 (2012).

    ADS  Article  Google Scholar 

  102. 102

    von Vacano, B., Meyer, L. & Motzkus, M. Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy. J. Raman Spectrosc. 38, 916–926 (2007).

    ADS  Article  Google Scholar 

  103. 103

    Wurpel, G. W. H., Schins, J. M. & Müller, M. Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 27, 1093–5 (2002).

    ADS  Article  Google Scholar 

  104. 104

    Jüngst, C., Winterhalder, M. J. & Zumbusch, A. Fast and long term lipid droplet tracking with CARS microscopy. J. Biophoton. 4, 435–441 (2011).

    Article  Google Scholar 

  105. 105

    Matthäus, C. et al. In vivo characterization of atherosclerotic plaque depositions by Raman-probe spectroscopy and in vitro coherent anti-stokes Raman scattering microscopic imaging on a rabbit model. Anal. Chem. 84, 7845–7851 (2012).

    Article  Google Scholar 

  106. 106

    Kim, S-H. et al. Multiplex coherent anti-stokes Raman spectroscopy images intact atheromatous lesions and concomitantly identifies distinct chemical profiles of atherosclerotic lipids. Circ. Res. 106, 1332–1341 (2010).

    Article  Google Scholar 

  107. 107

    Le, T. T., Langohr, I. M., Locker, M. J., Sturek, M. & Cheng, J-X. Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. J. Biomed. Opt. 12, 054007 (2007).

    ADS  Article  Google Scholar 

  108. 108

    Romer, T. J. et al. Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy. Circulation 97, 878–885 (1998).

    Article  Google Scholar 

  109. 109

    Le, T. T., Huff, T. B. & Cheng, J-X. Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis. BMC Cancer 9, 42 (2009).

    Article  Google Scholar 

  110. 110

    Mitra, R., Chao, O., Urasaki, Y., Goodman, O. B. & Le, T. T. Detection of lipid-rich prostate circulating tumour cells with coherent anti-Stokes Raman scattering microscopy. BMC Cancer 12, 540 (2012).

    Article  Google Scholar 

  111. 111

    Fu, Y., Wang, H., Huff, T. B., Shi, R. & Cheng, J-X. Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination. J. Neurosci. Res. 85, 2870–2881 (2007).

    Article  Google Scholar 

  112. 112

    Imitola, J. et al. Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice. J. Biomed. Opt. 16, 021109 (2011).

    ADS  Article  Google Scholar 

  113. 113

    Bélanger, E. et al. In vivo evaluation of demyelination and remyelination in a nerve crush injury model. Biomed. Opt. Express 2, 2698–2708 (2011).

    Article  Google Scholar 

  114. 114

    Ji, M. et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci. Transl. Med. 5, 1–10 (2013).

    Article  Google Scholar 

  115. 115

    Konorov, S. O. et al. In situ analysis of living embryonic stem cells by coherent anti-stokes Raman microscopy. Anal. Chem. 79, 7221–7225 (2007).

    Article  Google Scholar 

  116. 116

    Mouras, R., Bagnaninchi, P. O., Downes, A. R. & Elfick, A. P. D. Label-free assessment of adipose-derived stem cell differentiation using coherent anti-Stokes Raman scattering and multiphoton microscopy. J. Biomed. Opt. 17, 116011 (2012).

    ADS  Article  Google Scholar 

  117. 117

    Lee, Y. J. et al. Quantitative, label-free characterization of stem cell differentiation at the single-cell level by broadband coherent anti-Stokes Raman scattering microscopy. Tissue Eng. Part C. Methods 20, 562–569 (2014).

    Article  Google Scholar 

  118. 118

    De Grauw, C. J., Otto, C. & Greve, J. Line-scan Raman microspectrometry for biological applications. Appl. Spectrosc. 51, 1607–1612 (1997).

    ADS  Article  Google Scholar 

  119. 119

    Afonso, P. V. et al. LTB4 is a signal-relay molecule during neutrophil chemotaxis. Dev. Cell 22, 1079–1091 (2012).

    Article  Google Scholar 

  120. 120

    Hartshorn, C. M. et al. Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy. Anal. Chem. 85, 8102–8111 (2013).

    Article  Google Scholar 

  121. 121

    Windbergs, M. et al. Chemical imaging of oral solid dosage forms and changes upon dissolution using coherent anti-Stokes Raman scattering microscopy. Anal. Chem. 81, 2085–2091 (2009).

    Article  Google Scholar 

  122. 122

    Matthews, Q., Brolo, A., Lum, J., Duan, X. & Jirasek, A. Raman spectroscopy of single human tumour cells exposed to ionizing radiation in vitro. Phys. Med. Biol. 56, 19–38 (2011).

    Article  Google Scholar 

  123. 123

    Chen, B-C., Sung, J. & Lim, S-H. Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region. J. Phys. Chem. B 114, 16871–16880 (2010).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcus T. Cicerone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Camp Jr, C., Cicerone, M. Chemically sensitive bioimaging with coherent Raman scattering. Nature Photon 9, 295–305 (2015). https://doi.org/10.1038/nphoton.2015.60

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing